A342802 Replace 2^k with (-3)^k in binary expansion of n.
0, 1, -3, -2, 9, 10, 6, 7, -27, -26, -30, -29, -18, -17, -21, -20, 81, 82, 78, 79, 90, 91, 87, 88, 54, 55, 51, 52, 63, 64, 60, 61, -243, -242, -246, -245, -234, -233, -237, -236, -270, -269, -273, -272, -261, -260, -264, -263, -162, -161, -165, -164, -153, -152, -156, -155, -189, -188, -192, -191, -180, -179, -183, -182
Offset: 0
Examples
For n = 0, a(0) = 0. for n = 1, a(1) = -3^0 = 1. for n = 2, a(2) = -3^1 = -3. for n = 3, a(3) = -3^1 + -3^0 = -2. for n = 4, a(4) = -3^2 = 9. for n = 5, a(5) = -3^2 + -3^0 = 10.
Links
- Wyatt Powers, Table of n, a(n) for n = 0..9999
Programs
-
Mathematica
(* Returns first 100 numbers in the sequence; assigned to the list, a *) a = Table[IntegerDigits[x, 2], {x, 0, 100}]; For[i = 1, i <= Length[a], i++, For[j = 1, j <= Length[a[[i]]], j++, a[[i]][[j]] = ((a[[i]][[j]])*(-3)^(Length[a[[i]]] - j)) ] ]; For[i = 1, i <= Length[a], i++, a[[i]] = Total[a[[i]]]]; a
-
PARI
a(n) = my(b=Vecrev(binary(n))); sum(k=1, #b, b[k]*(-3)^(k-1)); \\ Michel Marcus, Mar 22 2021
-
PARI
a(n) = fromdigits(binary(n),-3) \\ Kevin Ryde, Mar 22 2021
-
Python
def a(n): return sum((-3)**k for k, b in enumerate(bin(n)[2:][::-1]) if b=='1') print([a(n) for n in range(64)]) # Michael S. Branicky, Mar 23 2021
Comments