cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A342826 Numbers k such that d(1)^0 + d(2)^1 + ... + d(p)^(p-1) = d(1)^(p-1) + d(2)^(p-2) + ... + d(p)^0, where d(i), i=1..p, are the digits of k.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 101, 111, 121, 131, 141, 151, 161, 171, 181, 191, 202, 212, 222, 232, 242, 252, 262, 272, 282, 292, 303, 313, 323, 333, 343, 353, 363, 373, 383, 393, 404, 414, 424, 434, 444, 454, 464
Offset: 1

Views

Author

Carole Dubois, Mar 23 2021

Keywords

Comments

This sequence starts off like other palindromic sequences such as A178354, A002113, A110751, and A227858 but it differs starting at the 110th term: 109th: 1001, 110th: 1011, 111th: 1101, ..., 119th: 1863, etc.
Differs from A297271 (which e.g. has 1021, 1031, 1041,.. 1091 which are absent here). - R. J. Mathar, Sep 27 2021
Contains the palindromes, and palindromes where pairs of digits have been substituted by d(i)=0, d(p-i)=1 or d(i)=1, d(p-1)=0, and "genuine" numbers like 1863, 2450, 2804, 2814, 3681, 4081, 4182, 103221, 113221, 122301, 122311, 142023,.. - R. J. Mathar, Sep 27 2021

Examples

			1863 is in this sequence because 1^0 + 8^1 + 6^2 + 3^3 = 1^3 + 8^2 + 6^1 + 3^0 = 72.
		

Crossrefs

Cf. A002113 (subset), A179309, A110751, A227858.

Programs

  • Maple
    isA342826 := proc(n)
        local dgs ;
        dgs := convert(n,base,10) ;
        if  add(op(i,dgs)^(i-1),i=1..nops(dgs)) = add(op(-i,dgs)^(i-1),i=1..nops(dgs)) then
            true;
        else
            false;
        end if;
    end proc:
    A342826 := proc(n)
        option remember ;
        if n =1 then
            1;
        else
            for a from procname(n-1)+ 1 do
                if isA342826(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc: # R. J. Mathar, Sep 27 2021
  • Mathematica
    Select[Range[500],Mod[#,10]!=0&&Total[IntegerDigits[#]^Range[0,IntegerLength[ #]-1]]==Total[IntegerDigits[#]^Range[IntegerLength[#]-1,0,-1]]&] (* Harvey P. Dale, Jan 18 2023 *)
  • Python
    def digpow(s): return sum(int(d)**i for i, d in enumerate(s))
    def aupto(limit):
      alst = []
      for k in range(1, limit+1):
        s = str(k)
        if digpow(s) == digpow(s[::-1]): alst.append(k)
      return alst
    print(aupto(464)) # Michael S. Branicky, Mar 23 2021