cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A342833 Integers m such that the number of divisors whose last digit equals the last digit of m sets a new record.

Original entry on oeis.org

1, 11, 40, 60, 120, 240, 360, 480, 600, 1200, 1800, 2400, 3600, 7200, 8400, 12600, 16800, 25200, 50400, 75600, 100800, 151200, 201600, 252000, 277200, 453600, 504000, 554400, 831600, 1108800, 1663200, 2217600, 2772000, 3326400, 4989600, 5544000, 6652800, 7207200
Offset: 1

Views

Author

Bernard Schott, Mar 23 2021

Keywords

Comments

Inspired by Project Euler, Problem 474 (see link).
The corresponding number of divisors whose last digit equals the last digit: 1, 2, 3, 4, 6, 8, 9, 10, 12, 16, 18, 20, ...

Examples

			a(5) = 120 is in the sequence because A330348(120) = 6, the six corresponding divisors are {10, 20, 30, 40, 60, 120} and 6 is larger than any earlier value in A330348.
		

Crossrefs

Programs

  • Mathematica
    d[n_] := DivisorSum[n, 1 &, Mod[# - n, 10] == 0 &]; dm = 0; s = {}; Do[d1 = d[n]; If[d1 > dm, dm = d1; AppendTo[s, n]], {n, 1, 10^7}]; s (* Amiram Eldar, Mar 23 2021 *)
  • PARI
    f(n) = my(dig = n%10); sumdiv(n, d, d%10 == dig); \\ A330348
    lista(nn) = my(m, k=0, kk); for (n=1, nn, kk = f(n); if (kk>k, print1(n, ", "); k = kk)); \\ Michel Marcus, Mar 24 2021

Formula

For n >= 3, a(n) = 10 * A002182(n) (conjectured).