A342833 Integers m such that the number of divisors whose last digit equals the last digit of m sets a new record.
1, 11, 40, 60, 120, 240, 360, 480, 600, 1200, 1800, 2400, 3600, 7200, 8400, 12600, 16800, 25200, 50400, 75600, 100800, 151200, 201600, 252000, 277200, 453600, 504000, 554400, 831600, 1108800, 1663200, 2217600, 2772000, 3326400, 4989600, 5544000, 6652800, 7207200
Offset: 1
Examples
a(5) = 120 is in the sequence because A330348(120) = 6, the six corresponding divisors are {10, 20, 30, 40, 60, 120} and 6 is larger than any earlier value in A330348.
Links
- Project Euler, Problem 474: Last digits of divisors.
Programs
-
Mathematica
d[n_] := DivisorSum[n, 1 &, Mod[# - n, 10] == 0 &]; dm = 0; s = {}; Do[d1 = d[n]; If[d1 > dm, dm = d1; AppendTo[s, n]], {n, 1, 10^7}]; s (* Amiram Eldar, Mar 23 2021 *)
-
PARI
f(n) = my(dig = n%10); sumdiv(n, d, d%10 == dig); \\ A330348 lista(nn) = my(m, k=0, kk); for (n=1, nn, kk = f(n); if (kk>k, print1(n, ", "); k = kk)); \\ Michel Marcus, Mar 24 2021
Formula
For n >= 3, a(n) = 10 * A002182(n) (conjectured).
Comments