A342842 All positive integer solutions m of equation A342369^k(6*p - 2) = m*3 + 2, sorted by p and k in ascending order, p has higher priority than k. p and k are positive integers. "^k" means recursion here.
2, 1, 6, 8, 5, 3, 4, 10, 14, 9, 12, 16, 18, 24, 32, 21, 28, 22, 26, 17, 11, 7, 30, 40, 34, 38, 25, 42, 56, 37, 46, 50, 33, 44, 29, 19, 54, 72, 96, 128, 85, 58, 62, 41, 27, 36, 48, 64, 66, 88, 70, 74, 49, 78, 104, 69, 92, 61, 82, 86, 57, 76, 90, 120, 160, 94, 98, 65, 43
Offset: 1
Keywords
Programs
Formula
a(1 + Sum_{k=1..n-1} A340407(k)) = 4*n-2.
a(Sum_{k=1..9*n-8} A340407(k)) = 24*n-23.
a(Sum_{k=1..9*n-1} A340407(k)) = 48*n-8.
a(n) = 8*(10^m - 1)/3 + 1 if n = Sum_{k=1..10^m} A340407(k).
a(n) = 4*10^m - 2 if n = -1 + Sum_{k=1..10^m} A340407(k).
a(n) = 4*10^m - 6 if n = -2 + Sum_{k=1..10^m} A340407(k).
a(n) = 5*10^m + (10^(n - 1) - 1)/3 - 13
if n = -3 + Sum_{k=1..10^m} A340407(k).
a(n) = 4*10^m - 10 if n = -4 + Sum_{k=1..10^m} A340407(k).
Comments