A342877 a(n) = 1 if the average distance between consecutive first n primes is greater than that of the first n-1 primes, otherwise a(n) = 0, for n > 2.
1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1
Offset: 3
Keywords
Examples
a(3) = 1 because the average distance between consecutive first three primes {2,3,5} is (5 - 2)/2 = 3/2 which is greater than the average distance between consecutive first two primes {2,3} which is (3-2)/1 = 1. a(6)=0 because the average distance between consecutive first six primes {2,3,5,7,11,13} is (13 - 2)/5 = 11/5 which is smaller than the average distance between consecutive first five primes {2,3,5,7,11} which is (11 - 2)/4 = 9/4.
Links
- Andres Cicuttin, Log-linear scatter plot of (1/n) Sum_{i=1..n} a(i) for first 2^18 primes.
- Wikipedia, Poisson point process
- Wikipedia, Exponential distribution
- Yamasaki, Yasuo and Yamasaki, Aiichi, On the Gap Distribution of Prime Numbers, 数理解析研究所講究録 (1994), 887: 151-168.
- Index entries for characteristic functions
Programs
-
Mathematica
a={}; nmax=128; Do[If[(Prime[n]-2)/(n-1)>(Prime[n-1]-2)/(n-2),AppendTo[a,1],AppendTo[a,0]],{n,3,nmax}]; a (* Uncomment and run next lines to produce the log-linear plot available in Links *) (* a={}; nmax=2^18; Do[If[(Prime[n]-2)/(n-1)>(Prime[n-1]-2)/(n-2),AppendTo[a,{n,1}],AppendTo[a,{n,0}]],{n,3,nmax}]; ListLogLinearPlot[Transpose[{Range[3,nmax],Accumulate[Transpose[a][[2]]]/Range[3,nmax]}],Frame->True,PlotRange->{All,{0.25,0.75}},PlotLabel->Text[Style["Sum_{i=1..n} a(i)/n",FontSize->16]], FrameLabel->{Text[Style["n",FontSize->16]],},PlotStyle->{PointSize->Small,Red},GridLines->Automatic] *)
-
PARI
A342877(n) = (((prime(n)-2)/(n-1)) > ((prime(n-1)-2)/(n-2))); \\ Antti Karttunen, Mar 28 2021
Comments