cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A342889 Triangle read by rows: T(n,k) = generalized binomial coefficients (n,k)_10 (n >= 0, 0 <= k <= n).

Original entry on oeis.org

1, 1, 1, 1, 11, 1, 1, 66, 66, 1, 1, 286, 1716, 286, 1, 1, 1001, 26026, 26026, 1001, 1, 1, 3003, 273273, 1184183, 273273, 3003, 1, 1, 8008, 2186184, 33157124, 33157124, 2186184, 8008, 1, 1, 19448, 14158144, 644195552, 2254684432, 644195552, 14158144, 19448, 1
Offset: 0

Views

Author

N. J. A. Sloane, Apr 01 2021

Keywords

Examples

			Triangle begins:
  [1],
  [1, 1],
  [1, 11, 1],
  [1, 66, 66, 1],
  [1, 286, 1716, 286, 1],
  [1, 1001, 26026, 26026, 1001, 1],
  [1, 3003, 273273, 1184183, 273273, 3003, 1],
  [1, 8008, 2186184, 33157124, 33157124, 2186184, 8008, 1],
...
		

References

  • Boris A. Bondarenko, Generalized Pascal Triangles and Pyramids (in Russian), FAN, Tashkent, 1990, ISBN 5-648-00738-8.

Crossrefs

Triangles of generalized binomial coefficients (n,k)_m (or generalized Pascal triangles) for m = 1,...,12: A007318 (Pascal), A001263, A056939, A056940, A056941, A142465, A142467, A142468, A174109, A342889, A342890, A342891.

Programs

  • Maple
    # Generalized binomial coefficient:
    GBC := proc(n,k,m) local a,j;
    a := mul((binomial(n+m-j,m)/binomial(j+m-1,m)),j=1..k);
    end;
    # Returns first M rows of triangle:
    GBCT := proc(m,M) local a,b,n,k; global GBC;
    a:=[];
    for n from 0 to M do
      b:=[seq(GBC(n,k,m),k=0..n)];
      a:=[op(a),b];
    od: a; end;
    GBCT(10,12);
  • Mathematica
    f[n_, k_, m_] := Product[Binomial[n + m - j, m]/Binomial[j + m - 1, m], {j, k}]; Table[f[n, k, 10], {n, 0, 8}, {k, 0, n}] // Flatten (* Michael De Vlieger, Sep 25 2023 *)
  • PARI
    f(n, k, m) = prod(j=1, k, binomial(n-j+m, m)/binomial(j-1+m, m));
    T(n, k) = f(n, k, 10); \\ Seiichi Manyama, Apr 02 2021

Formula

The generalized binomial coefficient (n,k)m = Product{j=1..k} binomial(n+m-j,m)/binomial(j+m-1,m).