A342890 Triangle read by rows: T(n,k) = generalized binomial coefficients (n,k)_11 (n >= 0, 0 <= k <= n).
1, 1, 1, 1, 12, 1, 1, 78, 78, 1, 1, 364, 2366, 364, 1, 1, 1365, 41405, 41405, 1365, 1, 1, 4368, 496860, 2318680, 496860, 4368, 1, 1, 12376, 4504864, 78835120, 78835120, 4504864, 12376, 1, 1, 31824, 32821152, 1837984512, 6892441920, 1837984512, 32821152, 31824, 1
Offset: 0
Examples
Triangle begins: [1], [1, 1], [1, 12, 1], [1, 78, 78, 1], [1, 364, 2366, 364, 1], [1, 1365, 41405, 41405, 1365, 1], [1, 4368, 496860, 2318680, 496860, 4368, 1], [1, 12376, 4504864, 78835120, 78835120, 4504864, 12376, 1], [1, 31824, 32821152, 1837984512, 6892441920, 1837984512, 32821152, 31824, 1], ...
Links
- Seiichi Manyama, Rows n = 0..139, flattened
Crossrefs
Programs
-
PARI
f(n, k, m) = prod(j=1, k, binomial(n-j+m, m)/binomial(j-1+m, m)); T(n, k) = f(n, k, 11); \\ Seiichi Manyama, Apr 02 2021
Formula
The generalized binomial coefficient (n,k)m = Product{j=1..k} binomial(n+m-j,m)/binomial(j+m-1,m).
Comments