A342908 Irregular triangular array of coefficients of the cd-index of the symmetric group S_n (or Boolean algebra B_n), n>=1.
1, 1, 1, 1, 1, 2, 2, 1, 3, 5, 3, 4, 1, 4, 9, 9, 4, 12, 10, 12, 1, 5, 14, 19, 14, 5, 25, 35, 42, 18, 35, 25, 34, 1, 6, 20, 34, 34, 20, 6, 44, 84, 100, 72, 140, 100, 28, 72, 84, 44, 136, 112, 112, 136, 1, 7, 27, 55, 69, 55, 27, 7, 70, 168, 198, 196, 378, 268, 126, 324, 378, 198, 40, 126, 196, 168, 70, 364, 504, 504, 612, 256, 420, 504, 256, 504, 364, 496
Offset: 1
Examples
1, 1, 1, 1, 1, 2, 2, 1, 3, 5, 3, 4, 1, 4, 9, 9, 4, 12, 10, 12, 1, 5, 14, 19, 14, 5, 25, 35, 42, 18, 35, 25, 34 The terms of the polynomials are ordered lexicographically. For example, row 5 represents the polynomial: c^4 + 3c^2d + 5cdc + 3dc^2 + 4d^2.
References
- R. P. Stanley, Enumerative Combinatorics, Vol I, second edition, page 54 and section 3.17.
Links
- Margaret M. Bayer, The cd-Index: A Survey, arXiv:1901.04939 [math.CO], 2019.
Programs
-
Mathematica
Join[{{1}},Table[h[list_]:=(-1)^(Length[list]+1)Apply[Multinomial,list];g[S_]:=Abs[Total[Map[h,Map[Differences,Map[Prepend[#,0]&,Map[Append[#,nn]&,Subsets[S]]]]]]];rhs=Drop[Map[g,Subsets[Range[nn-1]]],-2^(nn-2)];Clear[c,d];fib=Reverse[Map[#/.{2->d,1->c}&,Level[Map[Permutations,IntegerPartitions[nn-1,nn-1,{1,2}]],{2}]]];c:={{a},{b}};d:={{a,b},{b,a}};f[list1_,list2_]:=Level[Table[Table[Join[list1[[i]],list2[[k]]],{i,1,Length[list1]}],{k,1,Length[list2]}],{2}];rr=Table[Map[Fold[f,#[[1]],Rest[#]]&,fib][[i]]->Subscript[x,i],{i,1,Fibonacci[nn]}];eqn[list_]:=Total[Select[Map[Fold[f,#[[1]],Rest[#]]&,fib],MemberQ[#,list]&]/.rr]==FromDigits[Part[rhs,Flatten[Position[charmon=Drop[Map[Table[If[MemberQ[#,i],b,a],{i,1,nn-1}]&,Subsets[Range[nn-1]]],-2^(nn-2)],list]]]];charmon=Drop[Map[Table[If[MemberQ[#,i],b,a],{i,1,nn-1}]&,Subsets[Range[nn-1]]],-2^(nn-2)];Table[Subscript[x,i],{i,1,Fibonacci[nn]}]/.Flatten[Solve[Map[eqn[#]&,charmon]]],{nn,2,10}]]//Flatten
Comments