cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A342908 Irregular triangular array of coefficients of the cd-index of the symmetric group S_n (or Boolean algebra B_n), n>=1.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 1, 3, 5, 3, 4, 1, 4, 9, 9, 4, 12, 10, 12, 1, 5, 14, 19, 14, 5, 25, 35, 42, 18, 35, 25, 34, 1, 6, 20, 34, 34, 20, 6, 44, 84, 100, 72, 140, 100, 28, 72, 84, 44, 136, 112, 112, 136, 1, 7, 27, 55, 69, 55, 27, 7, 70, 168, 198, 196, 378, 268, 126, 324, 378, 198, 40, 126, 196, 168, 70, 364, 504, 504, 612, 256, 420, 504, 256, 504, 364, 496
Offset: 1

Views

Author

Geoffrey Critzer, Mar 28 2021

Keywords

Comments

Equivalently, the cd-index of the face lattice of the (n-1)-dimensional simplex.
These polynomials encode the numbers given in A335845. The row lengths are A000045(n). The row sums are A000111(n).

Examples

			  1,
  1,
  1, 1,
  1, 2,  2,
  1, 3,  5,  3,  4,
  1, 4,  9,  9,  4, 12, 10, 12,
  1, 5, 14, 19, 14,  5, 25, 35, 42, 18, 35, 25, 34
The terms of the polynomials are ordered lexicographically.  For example, row 5 represents the polynomial: c^4 + 3c^2d + 5cdc + 3dc^2 + 4d^2.
		

References

  • R. P. Stanley, Enumerative Combinatorics, Vol I, second edition, page 54 and section 3.17.

Crossrefs

Programs

  • Mathematica
    Join[{{1}},Table[h[list_]:=(-1)^(Length[list]+1)Apply[Multinomial,list];g[S_]:=Abs[Total[Map[h,Map[Differences,Map[Prepend[#,0]&,Map[Append[#,nn]&,Subsets[S]]]]]]];rhs=Drop[Map[g,Subsets[Range[nn-1]]],-2^(nn-2)];Clear[c,d];fib=Reverse[Map[#/.{2->d,1->c}&,Level[Map[Permutations,IntegerPartitions[nn-1,nn-1,{1,2}]],{2}]]];c:={{a},{b}};d:={{a,b},{b,a}};f[list1_,list2_]:=Level[Table[Table[Join[list1[[i]],list2[[k]]],{i,1,Length[list1]}],{k,1,Length[list2]}],{2}];rr=Table[Map[Fold[f,#[[1]],Rest[#]]&,fib][[i]]->Subscript[x,i],{i,1,Fibonacci[nn]}];eqn[list_]:=Total[Select[Map[Fold[f,#[[1]],Rest[#]]&,fib],MemberQ[#,list]&]/.rr]==FromDigits[Part[rhs,Flatten[Position[charmon=Drop[Map[Table[If[MemberQ[#,i],b,a],{i,1,nn-1}]&,Subsets[Range[nn-1]]],-2^(nn-2)],list]]]];charmon=Drop[Map[Table[If[MemberQ[#,i],b,a],{i,1,nn-1}]&,Subsets[Range[nn-1]]],-2^(nn-2)];Table[Subscript[x,i],{i,1,Fibonacci[nn]}]/.Flatten[Solve[Map[eqn[#]&,charmon]]],{nn,2,10}]]//Flatten