cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A342911 T(n, k) = Sum_{j=1..k} (1 + 2*cos(j*Pi/(k + 1)))^n for n > 0, T(0, 0) = 1. Triangle read by rows, T(n, k) for 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 1, 4, 0, 1, 8, 15, 0, 1, 16, 35, 54, 0, 1, 32, 83, 134, 185, 0, 1, 64, 199, 340, 481, 622, 0, 1, 128, 479, 872, 1265, 1658, 2051, 0, 1, 256, 1155, 2254, 3361, 4468, 5575, 6682, 0, 1, 512, 2787, 5854, 8993, 12132, 15271, 18410, 21549
Offset: 0

Views

Author

Peter Luschny, Mar 28 2021

Keywords

Examples

			Triangle starts:
[0] 1
[1] 0, 1
[2] 0, 1, 4
[3] 0, 1, 8,   15
[4] 0, 1, 16,  35,   54
[5] 0, 1, 32,  83,   134,  185
[6] 0, 1, 64,  199,  340,  481,  622
[7] 0, 1, 128, 479,  872,  1265, 1658,  2051
[8] 0, 1, 256, 1155, 2254, 3361, 4468,  5575,  6682
[9] 0, 1, 512, 2787, 5854, 8993, 12132, 15271, 18410, 21549
		

Crossrefs

Programs

  • Maple
    T := (n, k) -> `if`(n=0, 1, add((1+2*cos(j*Pi/(k+1)))^n, j=1..k)):
    seq(seq(simplify(T(n, k)), k=0..n), n=0..8);