A342924 Composite numbers k such that A003415(sigma(k)) = k + p*A003415(k), for some prime p, where A003415 is the arithmetic derivative, and sigma is the sum of divisors of n.
6, 28, 120, 496, 672, 963, 1036, 5871, 8128, 10479, 164284, 264768, 523776, 2308203, 6511664, 33550336, 41240261, 75384301, 400902412, 459818240, 581013140, 1253768516, 1476304896, 2114464203, 8589869056
Offset: 1
Crossrefs
Programs
-
Mathematica
Block[{f}, f[n_] := If[n < 2, 0, n Total[#2/#1 & @@@ FactorInteger[n]]]; Select[Range[4, 10^6], And[CompositeQ[#], PrimeQ[(f[DivisorSigma[1, #]] - #)/f[#] ]] &]] (* Michael De Vlieger, Apr 08 2021 *)
-
PARI
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1])); A342925(n) = A003415(sigma(n)); isA342924(n) = if((n<2)||isprime(n),0,my(q=(A342925(n)-n)/A003415(n)); ((1==denominator(q))&&isprime(q)));
Extensions
Terms a(21) - a(25) from Antti Karttunen, Feb 25 2022
Comments