A342935 Number of ordered triples (x, y, z) with gcd(x, y, z) = 1 and 1 <= {x, y, z} <= 2^n.
1, 7, 55, 439, 3433, 27541, 218773, 1749223, 13964245, 111725197, 893433661, 7147232467, 57169672861, 457364647435, 3658819119307, 29270432746633, 234161501271463, 1873293863661469, 14986321908515773, 119890565631185995, 959124025074311215, 7672992332048493361
Offset: 0
Keywords
Examples
For n=3, the size of the division cube matrix is 8 X 8 X 8: . : : : : : : : : : . z = 4 | 1 2 3 4 5 6 7 8 ------+---------------------- 1 /| o o o o o o o o 8 2 / | o . o . o . o . 4 64 Sum (z = 1) 3/ | o o o o o o o o 8 / / o . 4 48 Sum (z = 2) z = 5 |/1 2 3 4 5 6 7 8 o 8 / ------+---------------------- 4 60 Sum (z = 3) 1 /| o o o o o o o o 8 8 / 2 / | o o o o o o o o 8 4 / 3/ | o o o o o o o o 8 --/ / o o 8 48 Sum (z = 4) z = 6 |/1 2 3 4 5 6 7 8 o 7 / ------+---------------------- 8 / 1 /| o o o o o o o o 8 8 / 2 / | o . o . o . o . 4 8 / 3/ | o o o o o o o o 6 --/ / o . 4 63 Sum (z = 5) z = 7 |/1 2 3 4 5 6 7 8 o 8 / ------+---------------------- 3 / 1 /| o o o o o o o o 8 8 / 2 / | o o o o o o o o 8 4 / 3/ | o o o o o o o o 8 --/ / o o 8 45 Sum (z = 6) z = 8 |/1 2 3 4 5 6 7 8 o 8 / ------+---------------------- 8 / 1 | o o o o o o o o 8 7 / 2 | o . o . o . o . 4 8 / 3 | o o o o o o o o 8 --/ 4 | o . o . o . o . 4 63 Sum (z = 7) 5 | o o o o o o o o 8 / 6 | o . o . o . o . 4 / 7 | o o o o o o o o 8 / 8 | o . o . o . o . 4 / --/ 48 Sum (z = 8) | --- 439 Cube Sum (z = 1..8)
Links
- Chai Wah Wu, Table of n, a(n) for n = 0..53 (terms n = 0..32 from Karl-Heinz Hofmann)
Programs
-
Mathematica
Array[Sum[MoebiusMu[k]*Floor[(2^#)/k]^3, {k, 2^# + 1}] &, 22, 0] (* Michael De Vlieger, Apr 05 2021 *)
-
Python
from labmath import mobius def A342935(n): return sum(mobius(k)*(2**n//k)**3 for k in range(1, 2**n+1))
Formula
Extensions
Edited by N. J. A. Sloane, Jun 13 2021