A342938 a(n) is the Skolem number of the cycle graph C_n.
1, 1, 1, 3, 4, 4, 5, 4, 4, 5, 6, 7, 8, 8, 7, 8, 9, 9, 10, 11, 10, 12, 13, 12, 13, 13, 13, 15, 16, 16, 17, 16, 16, 17, 18, 19, 20, 20, 19, 20, 21, 21, 22, 23, 22, 24, 25, 24, 25, 25, 25, 27, 28, 28, 29, 28, 28, 29, 30, 31, 32, 32, 31, 32, 33, 33, 34, 35, 34, 36
Offset: 1
Links
- Braxton Carrigan and Garrett Green, Skolem Number of Subgraphs on the Triangular Lattice, Communications on Number Theory and Combinatorial Theory 2 (2021), Article 2.
- Index entries for linear recurrences with constant coefficients, signature (2,-2,2,-2,2,-1,0,0,0,0,0,-1,2,-2,2,-2,2,-1).
Crossrefs
Programs
-
Mathematica
a[n_]:=If[MemberQ[{3,9,15,21},Mod[n,24]],(n-3)/2+1,If[MemberQ[{0,1,2,8,10,11,16,17,18,19},Mod[n,24]],Ceiling[n/2],Ceiling[n/2]+1]]; Array[a,70]
Formula
G.f.: x*(1 - x + x^2 + x^3 - x^7 + x^8 - 2*x^9 + 2*x^10 - x^11 + 2*x^12 - x^13 + 2*x^15 - x^16)/(1 - 2*x + 2*x^2 - 2*x^3 + 2*x^4 - 2*x^5 + x^6 + x^12 - 2*x^13 + 2*x^14 - 2*x^15 + 2*x^16 - 2*x^17 + x^18).
a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - 2*a(n-4) + 2*a(n-5) - a(n-6) - a(n-12) + 2*a(n-13) - 2*a(n-14) + 2*a(n-15) - 2*a(n-16) + 2*a(n-17) - a(n-18) for n > 18.
a(n) = (n - 3)/2 + 1 when n is congruent to 3, 9, 15, 21 mod 24; ceiling(n/2) when n is congruent to 0, 1, 2, 8, 10, 11, 16, 17, 18, 19 mod 24; ceiling(n/2) + 1 when n is congruent to 4, 5, 6, 7, 12, 13, 14, 20, 22, 23 mod 24 (see Theorem 1.6 in Carrigan and Green).
Comments