cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A342944 Numbers m such that d(1)^0 + d(2)^1 + ... + d(k)^(k-1) = d(1)! + d(2)! + ... + d(k)!, where d(i), i=1..k, are the digits of m.

Original entry on oeis.org

1, 11, 12, 111, 121, 133, 202, 1020, 1111, 1211, 1331, 1403, 2021, 2030, 2120, 2220, 2305, 2413, 3012, 3102, 3115, 3202, 3215, 3322, 3335, 4033, 4123, 4223, 4434, 10165, 10201, 10210, 10300, 10533, 11065, 11111, 11200, 12065, 12111, 12200, 13050, 13265, 13311
Offset: 1

Views

Author

Carole Dubois, Mar 30 2021

Keywords

Examples

			2413 is in this sequence because 2^0 + 4^1 + 1^2 + 3^3 = 2! + 4! + 1! + 3! = 33.
		

Crossrefs

Programs

  • Mathematica
    Select[Range@20000,Total[(a=IntegerDigits@#)^Range[0,Length@a-1]]==Total[a!]&] (* Giorgos Kalogeropoulos, Mar 30 2021 *)
  • PARI
    is(n) = my(d = digits(n)); sum(i = 1, #d, d[i]!) == sum(i = 1, #d, d[i]^(i-1)) \\ David A. Corneth, Mar 30 2021
  • Python
    from math import factorial
    def digfac(s): return sum(factorial(int(d)) for d in s)
    def digpow(s): return sum(int(d)**i for i, d in enumerate(s))
    def aupto(limit):
      alst = []
      for k in range(1, limit+1):
        s = str(k)
        if digpow(s) == digfac(s): alst.append(k)
      return alst
    print(aupto(14000)) # Michael S. Branicky, Mar 30 2021
    
Showing 1-1 of 1 results.