cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A342960 Primes p such that p+A003132(p),(p+A003132(p))+A003132(p+A003132(p)), p-A003132(p), and (p-A003132(p))-A003132(p-A003132(p)) are prime.

Original entry on oeis.org

38377, 70957, 106867, 278177, 278393, 380377, 432199, 435763, 526397, 1093159, 2025577, 2761147, 3068119, 3656129, 3672659, 5649079, 6863173, 7366453, 8083937, 9015863, 9346507, 9497353, 14198467, 15099901, 15467423, 15479273, 16020607, 16437427, 17602547, 18804173, 20020019, 20794141, 22866121
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Mar 31 2021

Keywords

Comments

The number of digits of p that are not divisible by 3 is divisible by 3.

Examples

			a(3) = 106867 is a term because 106867, 106867+A003132(106867) = 107053, 107053+A003132(107053) = 107137, 106867-A003132(106867) = 106681, and 106681-A003132(106681) = 106543 are all prime.
		

Crossrefs

Contained in A179549 and A179550.
Cf. A003132.

Programs

  • Maple
    filter:= proc(n) local t,x,d;
      if not isprime(n) then return false fi;
      d:= add(t^2, t=convert(n,base,10));
      x:= n+d;
      if not isprime(x) then return false fi;
      if not isprime(x+add(t^2,t=convert(x,base,10))) then return false fi;
      x:= n-d;
      isprime(x) and isprime(x-add(t^2,t=convert(x,base,10)))
    end proc:
    select(filter, [seq(i,i=3..3*10^7,2)]);