A342960 Primes p such that p+A003132(p),(p+A003132(p))+A003132(p+A003132(p)), p-A003132(p), and (p-A003132(p))-A003132(p-A003132(p)) are prime.
38377, 70957, 106867, 278177, 278393, 380377, 432199, 435763, 526397, 1093159, 2025577, 2761147, 3068119, 3656129, 3672659, 5649079, 6863173, 7366453, 8083937, 9015863, 9346507, 9497353, 14198467, 15099901, 15467423, 15479273, 16020607, 16437427, 17602547, 18804173, 20020019, 20794141, 22866121
Offset: 1
Examples
a(3) = 106867 is a term because 106867, 106867+A003132(106867) = 107053, 107053+A003132(107053) = 107137, 106867-A003132(106867) = 106681, and 106681-A003132(106681) = 106543 are all prime.
Links
- Robert Israel, Table of n, a(n) for n = 1..250
Programs
-
Maple
filter:= proc(n) local t,x,d; if not isprime(n) then return false fi; d:= add(t^2, t=convert(n,base,10)); x:= n+d; if not isprime(x) then return false fi; if not isprime(x+add(t^2,t=convert(x,base,10))) then return false fi; x:= n-d; isprime(x) and isprime(x-add(t^2,t=convert(x,base,10))) end proc: select(filter, [seq(i,i=3..3*10^7,2)]);
Comments