A342961 Primes p such that p + the sum of its prime digits is prime.
11, 19, 29, 37, 41, 53, 61, 73, 89, 101, 109, 149, 181, 191, 199, 229, 233, 257, 269, 277, 281, 307, 331, 359, 379, 383, 401, 409, 419, 433, 449, 461, 491, 499, 563, 587, 593, 601, 619, 641, 653, 661, 673, 677, 691, 727, 797, 809, 811, 821, 881, 911, 919, 937, 941, 977, 991, 1009, 1019, 1033
Offset: 1
Examples
a(3) = 29 is a term because it is prime, the sum of its prime digits is 2, and 29+2 = 31 is also prime.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
f:= p -> p + convert(select(isprime,convert(p,base,10)),`+`): select(t -> isprime(t) and isprime(f(t)), [seq(i,i=3..2000,2)]);
-
Mathematica
Select[Prime@Range@200,PrimeQ@Total[Join[{#},Select[IntegerDigits@#,PrimeQ]]]&] (* Giorgos Kalogeropoulos, Apr 01 2021 *)
-
PARI
isok(p) = isprime(p) && isprime(p+sumdigits(p)); \\ Michel Marcus, Apr 01 2021