cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343032 Row sums of triangle A073165.

Original entry on oeis.org

1, 2, 4, 9, 24, 78, 313, 1557, 9606, 73482, 696736, 8187149, 119214337, 2150935400, 48085463503, 1331903411529, 45708405952786, 1943464419169294, 102378212255343442, 6681679619583450775, 540264005909352759970, 54120992439329583459008, 6716802027097934788929023
Offset: 0

Views

Author

Seiichi Manyama, Apr 03 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Product[(n - k + i + j - 1)/(i + j - 1), {i, 1, k}, {j, 1, i}], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Apr 03 2021 *)
    Table[Sum[BarnesG[k+1] / BarnesG[n+1] * Sqrt[Gamma[k+1] * Gamma[(n-k+2)/2] * BarnesG[n-k+1] * BarnesG[n+k+2] / (Gamma[n-k+1] * Gamma[(n+k+2)/2] * BarnesG[2*k+2])], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Apr 03 2021 *)
  • PARI
    a(n) = sum(k=0, n, prod(i=1, k, prod(j=1, i, (n-k+i+j-1)/(i+j-1))));

Formula

a(n) = Sum_{k=0..n} Product_{1<=i<=j<=k} (n-k+i+j-1)/(i+j-1).
Limit_{n->infinity} a(n)^(1/n^2) = 2^r * r^(r/2) * (1-r)^((1-r)/2) = 1.113022855718664043805172905388731078607920794227951582456470883692074109..., where r = 0.62986938372832785012478891433662812255632994055776040984266... is the root of the equation 2^(4*r) * (1-r)^(1-r) * r^(2*r) = (1+r)^(1+r). - Vaclav Kotesovec, Apr 03 2021