A343033 Array T(n, k), n, k > 0, read by antidiagonals; a variant of lunar multiplication (A087062) based on prime exponents of numbers (see Comments section for precise definition).
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 2, 5, 2, 1, 1, 5, 3, 3, 5, 1, 1, 6, 7, 4, 7, 6, 1, 1, 7, 15, 5, 5, 15, 7, 1, 1, 2, 11, 6, 11, 6, 11, 2, 1, 1, 3, 3, 7, 35, 35, 7, 3, 3, 1, 1, 10, 5, 4, 13, 30, 13, 4, 5, 10, 1, 1, 11, 21, 9, 5, 77, 77, 5, 9, 21, 11, 1
Offset: 1
Examples
Array T(n, k) begins: n\k| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ---- - -- -- -- -- --- --- -- -- --- --- --- --- --- 1| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2| 1 2 3 2 5 6 7 2 3 10 11 6 13 14 --> A007947 3| 1 3 5 3 7 15 11 3 5 21 13 15 17 33 --> A328915 4| 1 2 3 4 5 6 7 4 9 10 11 12 13 14 --> A007948 5| 1 5 7 5 11 35 13 5 7 55 17 35 19 65 6| 1 6 15 6 35 30 77 6 15 210 143 30 221 462 7| 1 7 11 7 13 77 17 7 11 91 19 77 23 119 8| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 9| 1 3 5 9 7 15 11 9 25 21 13 45 17 33 10| 1 10 21 10 55 210 91 10 21 110 187 210 247 910 11| 1 11 13 11 17 143 19 11 13 187 23 143 29 209 12| 1 6 15 12 35 30 77 12 45 210 143 60 221 462 13| 1 13 17 13 19 221 23 13 17 247 29 221 31 299 14| 1 14 33 14 65 462 119 14 33 910 209 462 299 238
Links
Programs
-
PARI
T(n,k) = { my (r=1, pp=factor(n)[,1]~, qq=factor(k)[,1]~); for (i=1, #pp, for (j=1, #qq, my (p=prime(primepi(pp[i])+primepi(qq[j])-1), v=valuation(r, p), w=min(valuation(n, pp[i]), valuation(k, qq[j]))); if (w>v, r*=p^(w-v)))); r }
Comments