A343034 Positive numbers m such that m^2 with last digit z deleted is still a perfect square k^2, and z divides m-k.
1, 13, 19, 487, 721, 18493, 27379, 702247, 1039681, 26666893, 39480499, 1012639687, 1499219281, 38453641213, 56930852179, 1460225726407, 2161873163521, 55450123962253, 82094249361619, 2105644484839207, 3117419602578001, 79959040299927613, 118379850648602419, 3036337886912410087
Offset: 1
Examples
For m = 13, 13^2 = 169, 4^2 = 16, 13^2 - 10*4^2 = 9 and 9 = 13-4 divides 13-4. For m = 19, 19^2 = 361, 6^2 = 36, 19^2 - 10*6^2 = 1 and 1 divides 19-6 = 13. For m = 487, 487^2 = 237169, 154^2 = 23716, 487^2 - 10*154^2 = 9 and 9 divides 487-154 = 333 = 9*37.
Links
- Diophante, A1872, Carrément magiques (in French).
- Index entries for linear recurrences with constant coefficients, signature (0,38,0,-1).
Programs
-
Mathematica
LinearRecurrence[{0, 38, 0, -1}, {1, 13, 19, 487}, 24] (* Amiram Eldar, Apr 03 2021 *)
Formula
a(2n+1) = A078986(n) for n >= 0.
a(2n) = A228209(3n) for n >= 1.
a(n+4) = 38*a(n+2) - a(n), a(1) = 1, a(2) = 13, a(3)= 19, a(4) = 487.
G.f.: x*(1 + 13*x - 19*x^2 - 7*x^3)/(1 - 38*x^2 + x^4). - Stefano Spezia, Apr 03 2021
Comments