A343040 Array T(n, k), n, k >= 0, read by antidiagonals; lunar addition table for the factorial base.
0, 1, 1, 2, 1, 2, 3, 3, 3, 3, 4, 3, 2, 3, 4, 5, 5, 3, 3, 5, 5, 6, 5, 4, 3, 4, 5, 6, 7, 7, 5, 5, 5, 5, 7, 7, 8, 7, 8, 5, 4, 5, 8, 7, 8, 9, 9, 9, 9, 5, 5, 9, 9, 9, 9, 10, 9, 8, 9, 10, 5, 10, 9, 8, 9, 10, 11, 11, 9, 9, 11, 11, 11, 11, 9, 9, 11, 11, 12, 11, 10, 9, 10, 11, 6, 11, 10, 9, 10, 11, 12
Offset: 0
Examples
Array T(n, k) begins: n\k| 0 1 2 3 4 5 6 7 8 9 10 11 12 ---+---------------------------------------------------- 0| 0 1 2 3 4 5 6 7 8 9 10 11 12 1| 1 1 3 3 5 5 7 7 9 9 11 11 13 2| 2 3 2 3 4 5 8 9 8 9 10 11 14 3| 3 3 3 3 5 5 9 9 9 9 11 11 15 4| 4 5 4 5 4 5 10 11 10 11 10 11 16 5| 5 5 5 5 5 5 11 11 11 11 11 11 17 6| 6 7 8 9 10 11 6 7 8 9 10 11 12 7| 7 7 9 9 11 11 7 7 9 9 11 11 13 8| 8 9 8 9 10 11 8 9 8 9 10 11 14 9| 9 9 9 9 11 11 9 9 9 9 11 11 15 10| 10 11 10 11 10 11 10 11 10 11 10 11 16 11| 11 11 11 11 11 11 11 11 11 11 11 11 17 12| 12 13 14 15 16 17 12 13 14 15 16 17 12 Array T(n, k) begins in factorial base: n\k| 0 1 10 11 20 21 100 101 110 111 120 121 200 ---+----------------------------------------------------------------- 0| 0 1 10 11 20 21 100 101 110 111 120 121 200 1| 1 1 11 11 21 21 101 101 111 111 121 121 201 10| 10 11 10 11 20 21 110 111 110 111 120 121 210 11| 11 11 11 11 21 21 111 111 111 111 121 121 211 20| 20 21 20 21 20 21 120 121 120 121 120 121 220 21| 21 21 21 21 21 21 121 121 121 121 121 121 221 100| 100 101 110 111 120 121 100 101 110 111 120 121 200 101| 101 101 111 111 121 121 101 101 111 111 121 121 201 110| 110 111 110 111 120 121 110 111 110 111 120 121 210 111| 111 111 111 111 121 121 111 111 111 111 121 121 211 120| 120 121 120 121 120 121 120 121 120 121 120 121 220 121| 121 121 121 121 121 121 121 121 121 121 121 121 221 200| 200 201 210 211 220 221 200 201 210 211 220 221 200
Links
- Rémy Sigrist, Table of n, a(n) for n = 0..10010
- Rémy Sigrist, Colored representation of the array for n, k < 6! (where the color is function of T(n, k))
- Index entries for sequences related to dismal (or lunar) arithmetic
- Index entries for sequences related to factorial base representation
Programs
-
PARI
T(n,k) = { my (v=0, f=1); for (r=2, oo, if (n==0 && k==0, return (v), v+=max(n%r, k%r)*f; f*=r; n\=r; k\=r)) }
Formula
T(n, k) = T(k, n).
T(m, T(n, k)) = T(T(m, n), k).
T(n, 0) = n.
T(n, n) = n.
Comments