cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343061 Decimal expansion of tan(Pi/17).

Original entry on oeis.org

1, 8, 6, 9, 3, 2, 3, 9, 7, 1, 0, 7, 9, 7, 7, 1, 4, 5, 9, 4, 8, 0, 7, 6, 2, 8, 4, 1, 2, 3, 0, 7, 6, 7, 7, 0, 6, 0, 3, 7, 2, 4, 4, 1, 0, 7, 8, 1, 9, 1, 4, 5, 4, 9, 3, 4, 8, 4, 6, 3, 6, 7, 5, 7, 3, 1, 4, 7, 8, 9, 2, 6, 9, 7, 0, 9, 0, 3, 0, 9, 2, 4, 5, 3, 7, 5, 5, 4, 1, 0, 3, 5, 0, 2, 6, 5, 9, 4, 5, 5, 0, 8, 3, 2, 1, 4, 6, 5, 1, 4, 8, 5, 7, 4, 0, 1, 5
Offset: 0

Views

Author

Seiichi Manyama, Apr 04 2021

Keywords

Comments

Root of the equation 17 - 680*x^2 + 6188*x^4 - 19448*x^6 + 24310*x^8 - 12376*x^10 + 2380*x^12 - 136*x^14 + x^16 = 0. - Vaclav Kotesovec, Apr 04 2021

Examples

			0.18693239710797714594807628412307...
		

Crossrefs

Cf. A241243 (sin(Pi/17)), A210649 (cos(Pi/17)).

Programs

  • Mathematica
    RealDigits[Tan[Pi/17], 10, 100][[1]] (* Amiram Eldar, Apr 27 2021 *)
  • PARI
    tan(Pi/17)

Formula

Equals sqrt((-2*(-8 + sqrt(2*(15 + sqrt(17) - sqrt(34 - 2*sqrt(17)) + sqrt(2*(34 + 6*sqrt(17) - sqrt(578 - 34*sqrt(17)) + sqrt(34 - 2*sqrt(17)) + 8*sqrt(2*(17 + sqrt(17)))))))))/(15 + sqrt(17) + sqrt(34 - 2*sqrt(17)) + sqrt(2*(34 + 6*sqrt(17) + sqrt(578 - 34*sqrt(17)) - sqrt(34 - 2*sqrt(17)) - 8*sqrt(2*(17 + sqrt(17))))))). - Vaclav Kotesovec, Apr 04 2021