A343097 Array read by antidiagonals: T(n,k) is the number of k-colorings of an n X n grid, up to rotations and reflections.
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 6, 1, 0, 1, 4, 21, 102, 1, 0, 1, 5, 55, 2862, 8548, 1, 0, 1, 6, 120, 34960, 5398083, 4211744, 1, 0, 1, 7, 231, 252375, 537157696, 105918450471, 8590557312, 1, 0, 1, 8, 406, 1284066, 19076074375, 140738033618944, 18761832172500795, 70368882591744, 1, 0
Offset: 0
Examples
Array begins: ==================================================================== n\k | 0 1 2 3 4 5 ----+--------------------------------------------------------------- 0 | 1 1 1 1 1 1 ... 1 | 0 1 2 3 4 5 ... 2 | 0 1 6 21 55 120 ... 3 | 0 1 102 2862 34960 252375 ... 4 | 0 1 8548 5398083 537157696 19076074375 ... 5 | 0 1 4211744 105918450471 140738033618944 37252918396015625 ... ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..860
Crossrefs
Programs
-
PARI
T(n,k) = {(k^(n^2) + 2*k^((n^2 + 3*(n%2))/4) + k^((n^2 + (n%2))/2) + 2*k^(n*(n+1)/2) + 2*k^(n*(n+n%2)/2) )/8}
Formula
T(n,k) = (k^(n^2) + 2*k^((n^2 + 3*(n mod 2))/4) + k^((n^2 + (n mod 2))/2) + 2*k^(n*(n+1)/2) + 2*k^(n*(n + n mod 2)/2) )/8.