A343098 Number of palindromes < 10^n whose squares are also palindromes.
1, 4, 6, 11, 14, 22, 27, 40, 49, 71, 87, 124, 151, 211, 254, 347, 412, 550, 644, 841, 972, 1244, 1421, 1786, 2019, 2497, 2797, 3410, 3789, 4561, 5032, 5989, 6566, 7736, 8434, 9847, 10682, 12370, 13359, 15356, 16517, 18859, 20211, 22936, 24499, 27647, 29442, 33055
Offset: 0
Examples
a(2) = 6 since the only palindromes < 100 whose square are palindromes are 0,1,2,3,11,22.
Links
- Chai Wah Wu, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (1,4,-4,-6,6,4,-4,-1,1).
Programs
Formula
a(n) = #{i:A057135(i)<10^n}.
For n > 0, a(n) = Sum_{i=1..n} A218035(i).
a(n) = a(n-1) + 4*a(n-2) - 4*a(n-3) - 6*a(n-4) + 6*a(n-5) + 4*a(n-6) - 4*a(n-7) - a(n-8) + a(n-9) for n > 9.
G.f.: (-x^9 + x^7 - x^6 - 6*x^5 - x^4 + 7*x^3 + 2*x^2 - 3*x - 1)/((x - 1)^5*(x + 1)^4).
a(n) = 1491 + 904*n + 510*n^2 - 52*n^3 + 6*n^4 + (-1)^n * (45 - 296*n + 42*n^2 - 4*n^3) for n>0. - Greg Dresden, Jun 20 2021
Comments