cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343106 Smallest number having exactly n divisors of the form 8*k + 5.

Original entry on oeis.org

1, 5, 45, 315, 585, 2205, 2925, 14175, 9945, 17325, 28665, 178605, 45045, 190575, 240975, 143325, 135135, 3189375, 225225, 93002175, 405405, 1403325, 1715175, 2401245, 675675, 3583125, 3239775, 1576575, 3468465, 94918019805, 2027025, 15436575, 2297295, 11609325, 16769025, 27286875, 3828825, 42879375, 117661005
Offset: 0

Views

Author

Jianing Song, Apr 05 2021

Keywords

Comments

Smallest index of n in A188171.
a(n) exists for all n, since 5*3^(2n-2) has exactly n divisors of the form 8*k + 1, namely 5*3^0, 5*3^2, ..., 5*3^(2n-2). This actually gives an upper bound (which is too far from reality when n is large) for a(n).

Examples

			a(4) = 585 since it is the smallest number with exactly 4 divisors congruent to 5 modulo 8, namely 5, 13, 45 and 585.
		

Crossrefs

Smallest number having exactly n divisors of the form 8*k + i: A343104 (i=1), A343105 (i=3), this sequence (i=5), A188226 (i=7).
Cf. A188171.

Programs

  • PARI
    res(n,a,b) = sumdiv(n, d, (d%a) == b)
    a(n) = for(k=1, oo, if(res(k,8,5)==n, return(k)))

Formula

a(2n-1) <= 3^(2n-2) * 35, since 3^(2n-2) * 35 has exactly 2n-1 divisors congruent to 5 modulo 8: 3^0 * 5, 3^2 * 5, ..., 3^(2n-2) * 5, 3^1 * 7, 3^3 * 7, ..., 3^(2n-3) * 7.
a(2n) <= 3^(n-1) * 455, since 3^(n-1) * 455 has exactly 2n divisors congruent to 5 modulo 8: 3^0 * 5, 3^2 * 5, ..., 3^b * 5, 3^1 * 7, 3^3 * 7, ..., 3^a * 7, 3^0 * 13, 3^2 * 13, ..., 3^b * 13, 3^1 * 455, 3^3 * 455, ... 3^a * 455, where a is the largest odd number <= n-1 and b is the largest even number <= n-1.

Extensions

More terms from Bert Dobbelaere, Apr 09 2021