A343105
Smallest number having exactly n divisors of the form 8*k + 3.
Original entry on oeis.org
1, 3, 27, 99, 297, 891, 1683, 8019, 5049, 17325, 15147, 99225, 31977, 190575, 136323, 121275, 95931, 3189375, 225225, 64304361, 287793, 1289925, 1686825, 15526875, 675675, 1091475, 3239775, 1576575, 2590137, 251644717004571, 2027025, 15436575, 2297295, 28676025, 33350625, 9823275, 3828825, 42879375, 760816875
Offset: 0
a(4) = 297 since it is the smallest number with exactly 4 divisors congruent to 3 modulo 8, namely 3, 11, 27 and 297.
Smallest number having exactly n divisors of the form 8*k + i:
A343104 (i=1), this sequence (i=3),
A343106 (i=5),
A188226 (i=7).
-
res(n,a,b) = sumdiv(n, d, (d%a) == b)
a(n) = for(k=1, oo, if(res(k,8,3)==n, return(k)))
A188226
Smallest number having exactly n divisors of the form 8*k + 7.
Original entry on oeis.org
1, 7, 63, 315, 945, 1575, 3465, 19845, 10395, 17325, 26775, 127575, 45045, 266805, 190575, 155925, 135135, 2480625, 225225, 130203045, 405405, 1289925, 2168775, 1715175, 675675, 3898125, 3468465, 1576575, 3239775, 67798585575, 2027025, 16769025, 2297295, 20539575, 42170625, 27286875, 3828825, 117661005
Offset: 0
Smallest number having exactly n divisors of the form 8*k + i:
A343104 (i=1),
A343105 (i=3),
A343106 (i=5), this sequence (i=7).
A343104
Smallest number having exactly n divisors of the form 8*k + 1.
Original entry on oeis.org
1, 9, 81, 153, 891, 1377, 8019, 3825, 11025, 15147, 88209, 31977, 354375, 99225, 121275, 95931, 7144929, 187425, 893025, 287793, 1403325, 1499553, 1715175, 675675, 1091475, 6024375, 1576575, 1686825, 72335025, 2027025, 2264802453041139, 2297295, 11609325, 121463793, 9823275
Offset: 1
a(4) = 153 since it is the smallest number with exactly 4 divisors congruent to 1 modulo 8, namely 1, 9, 17 and 153.
Smallest number having exactly n divisors of the form 8*k + i: this sequence (i=1),
A343105 (i=3),
A343106 (i=5),
A188226 (i=7).
-
res(n,a,b) = sumdiv(n, d, (d%a) == b)
a(n) = if(n>0, for(k=1, oo, if(res(k,8,1)==n, return(k))))
Original entry on oeis.org
1, 5, 45, 315, 585, 2205, 2925, 9945, 17325, 28665, 45045, 135135, 225225, 405405, 675675, 1576575, 2027025, 2297295, 3828825, 6891885, 11486475, 26801775, 34459425, 43648605, 72747675, 130945815, 218243025, 509233725, 654729075, 1003917915, 1527701175, 3011753745, 4583103525
Offset: 1
585 is in the sequence as A188171(585) = 4 via the divisors 5, 13, 45 and 117 and no positive integer < 585 has at least four such (5 (mod 8)) divisors.
-
Function[{s, r}, Map[FirstPosition[s, #][[1]] &, r]] @@ {#, Union@ FoldList[Max, #]} &@ Array[DivisorSum[#, 1 &, Mod[#, 8] == 5 &] &, 10^6] (* Michael De Vlieger, Apr 08 2021 *)
Showing 1-4 of 4 results.
Comments