A343105
Smallest number having exactly n divisors of the form 8*k + 3.
Original entry on oeis.org
1, 3, 27, 99, 297, 891, 1683, 8019, 5049, 17325, 15147, 99225, 31977, 190575, 136323, 121275, 95931, 3189375, 225225, 64304361, 287793, 1289925, 1686825, 15526875, 675675, 1091475, 3239775, 1576575, 2590137, 251644717004571, 2027025, 15436575, 2297295, 28676025, 33350625, 9823275, 3828825, 42879375, 760816875
Offset: 0
a(4) = 297 since it is the smallest number with exactly 4 divisors congruent to 3 modulo 8, namely 3, 11, 27 and 297.
Smallest number having exactly n divisors of the form 8*k + i:
A343104 (i=1), this sequence (i=3),
A343106 (i=5),
A188226 (i=7).
-
res(n,a,b) = sumdiv(n, d, (d%a) == b)
a(n) = for(k=1, oo, if(res(k,8,3)==n, return(k)))
A188226
Smallest number having exactly n divisors of the form 8*k + 7.
Original entry on oeis.org
1, 7, 63, 315, 945, 1575, 3465, 19845, 10395, 17325, 26775, 127575, 45045, 266805, 190575, 155925, 135135, 2480625, 225225, 130203045, 405405, 1289925, 2168775, 1715175, 675675, 3898125, 3468465, 1576575, 3239775, 67798585575, 2027025, 16769025, 2297295, 20539575, 42170625, 27286875, 3828825, 117661005
Offset: 0
Smallest number having exactly n divisors of the form 8*k + i:
A343104 (i=1),
A343105 (i=3),
A343106 (i=5), this sequence (i=7).
A343106
Smallest number having exactly n divisors of the form 8*k + 5.
Original entry on oeis.org
1, 5, 45, 315, 585, 2205, 2925, 14175, 9945, 17325, 28665, 178605, 45045, 190575, 240975, 143325, 135135, 3189375, 225225, 93002175, 405405, 1403325, 1715175, 2401245, 675675, 3583125, 3239775, 1576575, 3468465, 94918019805, 2027025, 15436575, 2297295, 11609325, 16769025, 27286875, 3828825, 42879375, 117661005
Offset: 0
a(4) = 585 since it is the smallest number with exactly 4 divisors congruent to 5 modulo 8, namely 5, 13, 45 and 585.
Smallest number having exactly n divisors of the form 8*k + i:
A343104 (i=1),
A343105 (i=3), this sequence (i=5),
A188226 (i=7).
-
res(n,a,b) = sumdiv(n, d, (d%a) == b)
a(n) = for(k=1, oo, if(res(k,8,5)==n, return(k)))
Original entry on oeis.org
1, 9, 81, 153, 891, 1377, 3825, 11025, 15147, 31977, 95931, 187425, 287793, 675675, 1091475, 1576575, 1686825, 2027025, 2297295, 3828825, 6185025, 11486475, 18555075, 26801775, 34459425, 43648605, 72747675, 117515475, 218243025, 352546425, 509233725, 654729075, 1003917915
Offset: 1
153 is in the sequence as A188169(153) = 4 via the divisors 1, 9, 17 and 153 and no positive integer < 153 has at least four such (1 (mod 8)) divisors.
Showing 1-4 of 4 results.
Comments