A188226
Smallest number having exactly n divisors of the form 8*k + 7.
Original entry on oeis.org
1, 7, 63, 315, 945, 1575, 3465, 19845, 10395, 17325, 26775, 127575, 45045, 266805, 190575, 155925, 135135, 2480625, 225225, 130203045, 405405, 1289925, 2168775, 1715175, 675675, 3898125, 3468465, 1576575, 3239775, 67798585575, 2027025, 16769025, 2297295, 20539575, 42170625, 27286875, 3828825, 117661005
Offset: 0
Smallest number having exactly n divisors of the form 8*k + i:
A343104 (i=1),
A343105 (i=3),
A343106 (i=5), this sequence (i=7).
A343106
Smallest number having exactly n divisors of the form 8*k + 5.
Original entry on oeis.org
1, 5, 45, 315, 585, 2205, 2925, 14175, 9945, 17325, 28665, 178605, 45045, 190575, 240975, 143325, 135135, 3189375, 225225, 93002175, 405405, 1403325, 1715175, 2401245, 675675, 3583125, 3239775, 1576575, 3468465, 94918019805, 2027025, 15436575, 2297295, 11609325, 16769025, 27286875, 3828825, 42879375, 117661005
Offset: 0
a(4) = 585 since it is the smallest number with exactly 4 divisors congruent to 5 modulo 8, namely 5, 13, 45 and 585.
Smallest number having exactly n divisors of the form 8*k + i:
A343104 (i=1),
A343105 (i=3), this sequence (i=5),
A188226 (i=7).
-
res(n,a,b) = sumdiv(n, d, (d%a) == b)
a(n) = for(k=1, oo, if(res(k,8,5)==n, return(k)))
A374158
a(n) is the smallest nonnegative integer k where exactly n pairs of positive integers (x, y) exist such that x^2 + 3*y^2 = k.
Original entry on oeis.org
0, 4, 91, 28, 196, 31213, 364, 9604, 53599, 2548, 470596
Offset: 0
n | a(n)
-----+---------------------------
1 | 4 = 2^2.
2 | 91 = 7 * 13.
3 | 28 = 2^2 * 7.
4 | 196 = 2^2 * 7^2.
5 | 31213 = 7^4 * 13.
6 | 364 = 2^2 * 7 * 13.
7 | 9604 = 2^2 * 7^4.
8 | 53599 = 7 * 13 * 19 * 31.
9 | 2548 = 2^2 * 7^2 * 13.
10 | 470596 = 2^2 * 7^6.
-
from itertools import count
from sympy.abc import x,y
from sympy.solvers.diophantine.diophantine import diop_quadratic
def A374158(n): return next(m for m in count(0) if sum(1 for d in diop_quadratic(x**2+3*y**2-m) if d[0]>0 and d[1]>0)==n) # Chai Wah Wu, Jun 29 2024
A374160
a(n) is the smallest nonnegative integer k where exactly n pairs of positive integers (x, y) exist such that x^2 + 11*y^2 = k.
Original entry on oeis.org
0, 12, 60, 180, 540, 1620, 2700, 8100, 12420, 20700, 37260, 1180980, 62100, 476100, 335340, 186300, 310500, 1822500, 558900, 53144100, 931500, 1676700, 4284900, 324860625, 1925100, 4657500, 244462860, 12854700, 8383500
Offset: 0
-
from itertools import count
from sympy.abc import x,y
from sympy.solvers.diophantine.diophantine import diop_quadratic
def A374160(n): return next(m for m in count(0) if sum(1 for d in diop_quadratic(x**2+11*y**2-m) if d[0]>0 and d[1]>0)==n) # Chai Wah Wu, Jun 30 2024
A343104
Smallest number having exactly n divisors of the form 8*k + 1.
Original entry on oeis.org
1, 9, 81, 153, 891, 1377, 8019, 3825, 11025, 15147, 88209, 31977, 354375, 99225, 121275, 95931, 7144929, 187425, 893025, 287793, 1403325, 1499553, 1715175, 675675, 1091475, 6024375, 1576575, 1686825, 72335025, 2027025, 2264802453041139, 2297295, 11609325, 121463793, 9823275
Offset: 1
a(4) = 153 since it is the smallest number with exactly 4 divisors congruent to 1 modulo 8, namely 1, 9, 17 and 153.
Smallest number having exactly n divisors of the form 8*k + i: this sequence (i=1),
A343105 (i=3),
A343106 (i=5),
A188226 (i=7).
-
res(n,a,b) = sumdiv(n, d, (d%a) == b)
a(n) = if(n>0, for(k=1, oo, if(res(k,8,1)==n, return(k))))
A374159
a(n) is the smallest nonnegative integer k where exactly n pairs of positive integers (x, y) exist such that x^2 + 7*y^2 = k.
Original entry on oeis.org
0, 8, 32, 128, 352, 704, 1408, 2816, 5632, 11264, 16192, 45056, 32384, 123904, 64768, 178112, 129536, 2883584, 259072, 1982464, 469568, 712448, 1036288, 184549376, 939136, 21551552, 4145152, 2849792, 1878272
Offset: 0
-
from itertools import count
from sympy.abc import x, y
from sympy.solvers.diophantine.diophantine import diop_quadratic
def A374159(n): return next(m for m in count(0) if sum(1 for d in diop_quadratic(x**2+7*y**2-m) if d[0]>0 and d[1]>0)==n) # Chai Wah Wu, Jun 30 2024
A374161
a(n) is the smallest nonnegative integer k where exactly n pairs of positive integers (x, y) exist such that x^2 + 19*y^2 = k.
Original entry on oeis.org
0, 20, 140, 700, 1540, 17500, 7700, 122500, 26180, 53900, 192500, 7035875, 130900, 592900, 4812500, 1347500, 602140, 150062500, 916300
Offset: 0
-
from itertools import count
from sympy.abc import x,y
from sympy.solvers.diophantine.diophantine import diop_quadratic
def A374161(n): return next(m for m in count(0) if sum(1 for d in diop_quadratic(x**2+19*y**2-m) if d[0]>0 and d[1]>0)==n) # Chai Wah Wu, Jun 30 2024
Original entry on oeis.org
1, 3, 27, 99, 297, 891, 1683, 5049, 15147, 31977, 95931, 225225, 287793, 675675, 1091475, 1576575, 2027025, 2297295, 3828825, 6185025, 11486475, 18555075, 26801775, 34459425, 43648605, 72747675, 117515475, 218243025, 352546425, 509233725, 654729075, 1003917915, 1527701175, 3011753745
Offset: 1
297 is in the sequence as A188170(297) = 4 via the divisors 3, 11, 27 and 99 and no positive integer < 297 has at least four such (3 (mod 8)) divisors.
Showing 1-8 of 8 results.
Comments