A374158 a(n) is the smallest nonnegative integer k where exactly n pairs of positive integers (x, y) exist such that x^2 + 3*y^2 = k.
0, 4, 91, 28, 196, 31213, 364, 9604, 53599, 2548, 470596
Offset: 0
Examples
n | a(n) -----+--------------------------- 1 | 4 = 2^2. 2 | 91 = 7 * 13. 3 | 28 = 2^2 * 7. 4 | 196 = 2^2 * 7^2. 5 | 31213 = 7^4 * 13. 6 | 364 = 2^2 * 7 * 13. 7 | 9604 = 2^2 * 7^4. 8 | 53599 = 7 * 13 * 19 * 31. 9 | 2548 = 2^2 * 7^2 * 13. 10 | 470596 = 2^2 * 7^6.
Programs
-
Python
from itertools import count from sympy.abc import x,y from sympy.solvers.diophantine.diophantine import diop_quadratic def A374158(n): return next(m for m in count(0) if sum(1 for d in diop_quadratic(x**2+3*y**2-m) if d[0]>0 and d[1]>0)==n) # Chai Wah Wu, Jun 29 2024
Comments