cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A374160 a(n) is the smallest nonnegative integer k where exactly n pairs of positive integers (x, y) exist such that x^2 + 11*y^2 = k.

Original entry on oeis.org

0, 12, 60, 180, 540, 1620, 2700, 8100, 12420, 20700, 37260, 1180980, 62100, 476100, 335340, 186300, 310500, 1822500, 558900, 53144100, 931500, 1676700, 4284900, 324860625, 1925100, 4657500, 244462860, 12854700, 8383500
Offset: 0

Views

Author

Seiichi Manyama, Jun 29 2024

Keywords

Comments

a(n) is the smallest nonnegative k such that A374017(k) = n.
a(30) = 5775300.
a(31) = 38564100.
a(32) = 9625500.
a(33) = 135812700.
a(35) = 41917500.
a(36) = 17325900.
a(37) = 107122500.
a(40) = 28876500.

Crossrefs

Programs

  • Python
    from itertools import count
    from sympy.abc import x,y
    from sympy.solvers.diophantine.diophantine import diop_quadratic
    def A374160(n): return next(m for m in count(0) if sum(1 for d in diop_quadratic(x**2+11*y**2-m) if d[0]>0 and d[1]>0)==n) # Chai Wah Wu, Jun 30 2024

A374159 a(n) is the smallest nonnegative integer k where exactly n pairs of positive integers (x, y) exist such that x^2 + 7*y^2 = k.

Original entry on oeis.org

0, 8, 32, 128, 352, 704, 1408, 2816, 5632, 11264, 16192, 45056, 32384, 123904, 64768, 178112, 129536, 2883584, 259072, 1982464, 469568, 712448, 1036288, 184549376, 939136, 21551552, 4145152, 2849792, 1878272
Offset: 0

Views

Author

Seiichi Manyama, Jun 29 2024

Keywords

Comments

a(n) is the smallest nonnegative k such that A216511(k) = n.
Conjecture: All terms are multiple of a(1) = 8.
a(30) = 5165248.
a(31) = 16386304.
a(32) = 3756544.
a(33) = 11399168.
a(34) = 66322432.
a(35) = 86206208.
a(36) = 7513088.

Crossrefs

Programs

  • Python
    from itertools import count
    from sympy.abc import x, y
    from sympy.solvers.diophantine.diophantine import diop_quadratic
    def A374159(n): return next(m for m in count(0) if sum(1 for d in diop_quadratic(x**2+7*y**2-m) if d[0]>0 and d[1]>0)==n) # Chai Wah Wu, Jun 30 2024

A374161 a(n) is the smallest nonnegative integer k where exactly n pairs of positive integers (x, y) exist such that x^2 + 19*y^2 = k.

Original entry on oeis.org

0, 20, 140, 700, 1540, 17500, 7700, 122500, 26180, 53900, 192500, 7035875, 130900, 592900, 4812500, 1347500, 602140, 150062500, 916300
Offset: 0

Views

Author

Seiichi Manyama, Jun 29 2024

Keywords

Crossrefs

Programs

  • Python
    from itertools import count
    from sympy.abc import x,y
    from sympy.solvers.diophantine.diophantine import diop_quadratic
    def A374161(n): return next(m for m in count(0) if sum(1 for d in diop_quadratic(x**2+19*y**2-m) if d[0]>0 and d[1]>0)==n) # Chai Wah Wu, Jun 30 2024

A374286 a(n) is the smallest nonnegative integer k where there are exactly n nonnegative integer solutions to x^2 + 3*y^2 = k.

Original entry on oeis.org

2, 0, 4, 28, 1729, 196, 364, 1529437, 9604, 2548, 593047, 470596, 6916, 68574961, 33124, 124852, 1983163
Offset: 0

Views

Author

Seiichi Manyama, Jul 02 2024

Keywords

Comments

a(n) is the smallest nonnegative k such that A119395(k) = n.
a(18) = 48412.
a(20) = 18384457.
a(21) = 6117748.
a(23) = 1623076.
a(24) = 214396.
a(27) = 629356.
a(30) = 2372188.
a(32) = 79530724.
a(36) = 1500772.
a(41) = 11957764.
a(42) = 116237212.

Crossrefs

Programs

  • PARI
    b(n, k) = sum(i=0, sqrtint(n), sum(j=0, sqrtint(n\k), i^2+k*j^2==n));
    a(n, k=3) = my(cnt=0); while(b(cnt, k)!=n, cnt++); cnt;
Showing 1-4 of 4 results.