cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A374158 a(n) is the smallest nonnegative integer k where exactly n pairs of positive integers (x, y) exist such that x^2 + 3*y^2 = k.

Original entry on oeis.org

0, 4, 91, 28, 196, 31213, 364, 9604, 53599, 2548, 470596
Offset: 0

Views

Author

Seiichi Manyama, Jun 29 2024

Keywords

Comments

a(n) is the smallest nonnegative k such that A092573(k) = n.
a(11) <= 3672178237.
a(12) = 6916.
a(13) = 33124.
a(14) = 29059303.
a(15) = 124852.
a(16) = 1983163.
a(18) = 48412.
a(20) = 18384457.
a(21) = 6117748.
a(22) = 1623076.
a(24) = 214396.
a(27) = 629356.
a(28) = 900838393.
a(31) = 79530724.
a(32) = 85276009.
a(37) = 274299844.
a(42) = 116237212.
a(60) = 73537828.
a(67) = 585930436.
From Chai Wah Wu, Jun 29-30 2024: (Start)
a(30) = 2372188.
a(36) = 1500772.
a(40) = 11957764.
a(45) = 30838444.
a(48) = 7932652.
a(54) = 19510036.
a(72) = 55528564.
(End)

Examples

			   n | a(n)
-----+---------------------------
   1 |      4 = 2^2.
   2 |     91 = 7 * 13.
   3 |     28 = 2^2 * 7.
   4 |    196 = 2^2 * 7^2.
   5 |  31213 = 7^4 * 13.
   6 |    364 = 2^2 * 7 * 13.
   7 |   9604 = 2^2 * 7^4.
   8 |  53599 = 7 * 13 * 19 * 31.
   9 |   2548 = 2^2 * 7^2 * 13.
  10 | 470596 = 2^2 * 7^6.
		

Crossrefs

Programs

  • Python
    from itertools import count
    from sympy.abc import x,y
    from sympy.solvers.diophantine.diophantine import diop_quadratic
    def A374158(n): return next(m for m in count(0) if sum(1 for d in diop_quadratic(x**2+3*y**2-m) if d[0]>0 and d[1]>0)==n) # Chai Wah Wu, Jun 29 2024

A374160 a(n) is the smallest nonnegative integer k where exactly n pairs of positive integers (x, y) exist such that x^2 + 11*y^2 = k.

Original entry on oeis.org

0, 12, 60, 180, 540, 1620, 2700, 8100, 12420, 20700, 37260, 1180980, 62100, 476100, 335340, 186300, 310500, 1822500, 558900, 53144100, 931500, 1676700, 4284900, 324860625, 1925100, 4657500, 244462860, 12854700, 8383500
Offset: 0

Views

Author

Seiichi Manyama, Jun 29 2024

Keywords

Comments

a(n) is the smallest nonnegative k such that A374017(k) = n.
a(30) = 5775300.
a(31) = 38564100.
a(32) = 9625500.
a(33) = 135812700.
a(35) = 41917500.
a(36) = 17325900.
a(37) = 107122500.
a(40) = 28876500.

Crossrefs

Programs

  • Python
    from itertools import count
    from sympy.abc import x,y
    from sympy.solvers.diophantine.diophantine import diop_quadratic
    def A374160(n): return next(m for m in count(0) if sum(1 for d in diop_quadratic(x**2+11*y**2-m) if d[0]>0 and d[1]>0)==n) # Chai Wah Wu, Jun 30 2024

A374159 a(n) is the smallest nonnegative integer k where exactly n pairs of positive integers (x, y) exist such that x^2 + 7*y^2 = k.

Original entry on oeis.org

0, 8, 32, 128, 352, 704, 1408, 2816, 5632, 11264, 16192, 45056, 32384, 123904, 64768, 178112, 129536, 2883584, 259072, 1982464, 469568, 712448, 1036288, 184549376, 939136, 21551552, 4145152, 2849792, 1878272
Offset: 0

Views

Author

Seiichi Manyama, Jun 29 2024

Keywords

Comments

a(n) is the smallest nonnegative k such that A216511(k) = n.
Conjecture: All terms are multiple of a(1) = 8.
a(30) = 5165248.
a(31) = 16386304.
a(32) = 3756544.
a(33) = 11399168.
a(34) = 66322432.
a(35) = 86206208.
a(36) = 7513088.

Crossrefs

Programs

  • Python
    from itertools import count
    from sympy.abc import x, y
    from sympy.solvers.diophantine.diophantine import diop_quadratic
    def A374159(n): return next(m for m in count(0) if sum(1 for d in diop_quadratic(x**2+7*y**2-m) if d[0]>0 and d[1]>0)==n) # Chai Wah Wu, Jun 30 2024
Showing 1-3 of 3 results.