cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A141164 Numbers having exactly 1 divisor of the form 8*k + 7.

Original entry on oeis.org

7, 14, 15, 21, 23, 28, 30, 31, 35, 39, 42, 45, 46, 47, 49, 55, 56, 60, 62, 69, 70, 71, 75, 77, 78, 79, 84, 87, 90, 91, 92, 93, 94, 95, 98, 103, 110, 111, 112, 115, 117, 120, 124, 127, 133, 138, 140, 141, 142, 143, 147, 150, 151, 154, 155, 156, 158, 159, 167, 168, 174, 180, 182, 183, 184, 186, 188, 190, 191, 196, 199
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 26 2011

Keywords

Examples

			a(1) = A188226(1) = 7.
		

Crossrefs

Numbers having m divisors of the form 8*k + i: A343107 (m=1, i=1), A343108 (m=0, i=3), A343109 (m=0, i=5), A343110 (m=0, i=7), A343111 (m=2, i=1), A343112 (m=1, i=3), A343113 (m=1, i=5), this sequence (m=1, i=7).
Indices of 1 in A188172.
A007522 is a subsequence.
Cf. A004771.

Programs

  • Haskell
    import Data.List (elemIndices)
    a141164 n = a141164_list !! (n-1)
    a141164_list = map succ $ elemIndices 1 $ map a188172 [1..]
    
  • Mathematica
    okQ[n_] := Length[Select[Divisors[n] - 7, Mod[#, 8] == 0 &]] == 1; Select[Range[200], okQ]
  • PARI
    res(n, a, b) = sumdiv(n, d, (d%a) == b)
    isA141164(n) = (res(n, 8, 7) == 1) \\ Jianing Song, Apr 06 2021

Formula

A188172(a(n)) = 1.

A188172 Number of divisors d of n of the form d == 7 (mod 8).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 2, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1
Offset: 1

Views

Author

R. J. Mathar, Mar 23 2011

Keywords

Examples

			a(A007522(i)) = 1, any i.
		

Crossrefs

Programs

  • Haskell
    a188172 n = length $ filter ((== 0) . mod n) [7,15..n]
    -- Reinhard Zumkeller, Mar 26 2011
    
  • Maple
    sigmamr := proc(n,m,r) local a,d ; a := 0 ; for d in numtheory[divisors](n) do if modp(d,m) = r then a := a+1 ; end if; end do: a; end proc:
    A188172 := proc(n) sigmamr(n,8,7) ; end proc:
  • Mathematica
    Table[Count[Divisors[n],?(Mod[#,8]==7&)],{n,90}] (* _Harvey P. Dale, Mar 08 2014 *)
  • PARI
    a(n) = sumdiv(n, d, (d % 8) == 7); \\ Amiram Eldar, Nov 25 2023

Formula

A188170(n)+a(n) = A001842(n).
A188169(n)+A188170(n)-A188171(n)-a(n) = A002325(n).
a(A188226(n))=n and a(m)<>n for m<A188226(n), n>=0; a(A141164(n))=1. - Reinhard Zumkeller, Mar 26 2011
G.f.: Sum_{k>=1} x^(7*k)/(1 - x^(8*k)). - Ilya Gutkovskiy, Sep 11 2019
Sum_{k=1..n} a(k) = n*log(n)/8 + c*n + O(n^(1/3)*log(n)), where c = gamma(7,8) - (1 - gamma)/8 = -0.212276..., gamma(7,8) = -(psi(7/8) + log(8))/8 is a generalized Euler constant, and gamma is Euler's constant (A001620) (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023

A343105 Smallest number having exactly n divisors of the form 8*k + 3.

Original entry on oeis.org

1, 3, 27, 99, 297, 891, 1683, 8019, 5049, 17325, 15147, 99225, 31977, 190575, 136323, 121275, 95931, 3189375, 225225, 64304361, 287793, 1289925, 1686825, 15526875, 675675, 1091475, 3239775, 1576575, 2590137, 251644717004571, 2027025, 15436575, 2297295, 28676025, 33350625, 9823275, 3828825, 42879375, 760816875
Offset: 0

Views

Author

Jianing Song, Apr 05 2021

Keywords

Comments

Smallest index of n in A188170.
a(n) exists for all n, since 3^(2n-1) has exactly n divisors of the form 8*k + 3, namely 3^1, 3^3, ..., 3^(2n-1). This actually gives an upper bound (which is too far from reality when n is large) for a(n).

Examples

			a(4) = 297 since it is the smallest number with exactly 4 divisors congruent to 3 modulo 8, namely 3, 11, 27 and 297.
		

Crossrefs

Smallest number having exactly n divisors of the form 8*k + i: A343104 (i=1), this sequence (i=3), A343106 (i=5), A188226 (i=7).
Cf. A188170.

Programs

  • PARI
    res(n,a,b) = sumdiv(n, d, (d%a) == b)
    a(n) = for(k=1, oo, if(res(k,8,3)==n, return(k)))

Formula

a(2n-1) <= 3^(2n-2) * 11, since 3^(2n-2) * 11 has exactly 2n-1 divisors congruent to 3 modulo 8: 3^1, 3^3, ..., 3^(2n-3), 3^0 * 11, 3^2 * 11, ..., 3^(2n-2) * 11.
a(2n) <= 3^(n-1) * 187, since 3^(n-1) * 187 has exactly 2n divisors congruent to 3 modulo 8: 3^1, 3^3, ..., 3^a, 3^1 * 17, 3^3 * 17, ..., 3^a * 17, 3^0 * 11, 3^2 * 11, ..., 3^b * 11, 3^0 * 187, 3^2 * 187, ... 3^b * 187, where a is the largest odd number <= n-1 and b is the largest even number <= n-1.

Extensions

More terms from Bert Dobbelaere, Apr 09 2021

A343106 Smallest number having exactly n divisors of the form 8*k + 5.

Original entry on oeis.org

1, 5, 45, 315, 585, 2205, 2925, 14175, 9945, 17325, 28665, 178605, 45045, 190575, 240975, 143325, 135135, 3189375, 225225, 93002175, 405405, 1403325, 1715175, 2401245, 675675, 3583125, 3239775, 1576575, 3468465, 94918019805, 2027025, 15436575, 2297295, 11609325, 16769025, 27286875, 3828825, 42879375, 117661005
Offset: 0

Views

Author

Jianing Song, Apr 05 2021

Keywords

Comments

Smallest index of n in A188171.
a(n) exists for all n, since 5*3^(2n-2) has exactly n divisors of the form 8*k + 1, namely 5*3^0, 5*3^2, ..., 5*3^(2n-2). This actually gives an upper bound (which is too far from reality when n is large) for a(n).

Examples

			a(4) = 585 since it is the smallest number with exactly 4 divisors congruent to 5 modulo 8, namely 5, 13, 45 and 585.
		

Crossrefs

Smallest number having exactly n divisors of the form 8*k + i: A343104 (i=1), A343105 (i=3), this sequence (i=5), A188226 (i=7).
Cf. A188171.

Programs

  • PARI
    res(n,a,b) = sumdiv(n, d, (d%a) == b)
    a(n) = for(k=1, oo, if(res(k,8,5)==n, return(k)))

Formula

a(2n-1) <= 3^(2n-2) * 35, since 3^(2n-2) * 35 has exactly 2n-1 divisors congruent to 5 modulo 8: 3^0 * 5, 3^2 * 5, ..., 3^(2n-2) * 5, 3^1 * 7, 3^3 * 7, ..., 3^(2n-3) * 7.
a(2n) <= 3^(n-1) * 455, since 3^(n-1) * 455 has exactly 2n divisors congruent to 5 modulo 8: 3^0 * 5, 3^2 * 5, ..., 3^b * 5, 3^1 * 7, 3^3 * 7, ..., 3^a * 7, 3^0 * 13, 3^2 * 13, ..., 3^b * 13, 3^1 * 455, 3^3 * 455, ... 3^a * 455, where a is the largest odd number <= n-1 and b is the largest even number <= n-1.

Extensions

More terms from Bert Dobbelaere, Apr 09 2021

A343104 Smallest number having exactly n divisors of the form 8*k + 1.

Original entry on oeis.org

1, 9, 81, 153, 891, 1377, 8019, 3825, 11025, 15147, 88209, 31977, 354375, 99225, 121275, 95931, 7144929, 187425, 893025, 287793, 1403325, 1499553, 1715175, 675675, 1091475, 6024375, 1576575, 1686825, 72335025, 2027025, 2264802453041139, 2297295, 11609325, 121463793, 9823275
Offset: 1

Views

Author

Jianing Song, Apr 05 2021

Keywords

Comments

Smallest index of n in A188169.
a(n) exists for all n, since 3^(2n-2) has exactly n divisors of the form 8*k + 1, namely 3^0, 3^2, ..., 3^(2n-2). This actually gives an upper bound for a(n).
From David A. Corneth, Apr 05 2021: (Start)
All terms are odd since if a term is even then the odd part has the same number of such divisors.
No a(2*k + 1) is divisible by a prime congruent to 1 (mod 8).
If for some k, A188169(k) > m then A188169(k*t) > m for all t > 0. This can be used to trim searches when looking for some a(m).
If gcd(k, m) = 1 then A188169(k) * A188169(m) <= A188169(k*m) (End)

Examples

			a(4) = 153 since it is the smallest number with exactly 4 divisors congruent to 1 modulo 8, namely 1, 9, 17 and 153.
		

Crossrefs

Smallest number having exactly n divisors of the form 8*k + i: this sequence (i=1), A343105 (i=3), A343106 (i=5), A188226 (i=7).
Cf. A188169.

Programs

  • PARI
    res(n,a,b) = sumdiv(n, d, (d%a) == b)
    a(n) = if(n>0, for(k=1, oo, if(res(k,8,1)==n, return(k))))

Formula

a(2n-1) <= 3^(2n-2) * 11, since 3^(2n-2) * 11 has exactly 2n-1 divisors congruent to 1 modulo 8: 3^0, 3^2, ..., 3^(2n-2), 3^1 * 11, 3^3 * 11, ..., 3^(2n-3) * 11.
a(2n) <= 3^(n-1) * 187, since 3^(n-1) * 187 has exactly 2n divisors congruent to 1 modulo 8: 3^0, 3^2, ..., 3^b, 3^0 * 17, 3^2 * 17, ..., 3^b * 17, 3^1 * 11, 3^3 * 11, ..., 3^a * 11, 3^1 * 187, 3^3 * 187, ... 3^a * 187, where a is the largest odd number <= n-1 and b is the largest even number <= n-1.

Extensions

More terms from David A. Corneth, Apr 06 2021

A343137 Positions of records in A188172.

Original entry on oeis.org

1, 7, 63, 315, 945, 1575, 3465, 10395, 17325, 26775, 45045, 135135, 225225, 405405, 675675, 1576575, 2027025, 2297295, 3828825, 6891885, 11486475, 26801775, 34459425, 43648605, 72747675, 130945815, 218243025, 509233725, 654729075, 1003917915, 1527701175, 3011753745, 4583103525
Offset: 1

Views

Author

David A. Corneth, Apr 06 2021

Keywords

Examples

			945 is in the sequence as A188172(945) = 4 via the divisors 7, 15, 63 and 135 and no positive integer < 945 has at least four such (7 (mod 8)) divisors.
		

Crossrefs

Programs

  • Mathematica
    Function[{s, r}, Map[FirstPosition[s, #][[1]] &, r]] @@ {#, Union@ FoldList[Max, #]} &@ Array[DivisorSum[#, 1 &, Mod[#, 8] == 7 &] &, 10^6] (* Michael De Vlieger, Apr 08 2021 *)
Showing 1-6 of 6 results.