cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A007522 Primes of the form 8n+7, that is, primes congruent to -1 mod 8.

Original entry on oeis.org

7, 23, 31, 47, 71, 79, 103, 127, 151, 167, 191, 199, 223, 239, 263, 271, 311, 359, 367, 383, 431, 439, 463, 479, 487, 503, 599, 607, 631, 647, 719, 727, 743, 751, 823, 839, 863, 887, 911, 919, 967, 983, 991, 1031, 1039, 1063, 1087, 1103, 1151
Offset: 1

Views

Author

Keywords

Comments

Primes that are the sum of no fewer than four positive squares.
Discriminant is 32, class is 2. Binary quadratic forms ax^2 + bxy + cy^2 have discriminant d = b^2 - 4ac and gcd(a, b, c) = 1.
Primes p such that x^4 = 2 has just two solutions mod p. Subsequence of A040098. Solutions mod p are represented by integers from 0 to p - 1. For p > 2, i is a solution mod p of x^4 = 2 if and only if p - i is a solution mod p of x^4 = 2, so the sum of the two solutions is p. The solutions are given in A065907 and A065908. - Klaus Brockhaus, Nov 28 2001
As this is a subset of A001132, this is also a subset of the primes of form x^2 - 2y^2. And as this is also a subset of A038873, this is also a subset of the primes of form x^2 - 2y^2. - Tito Piezas III, Dec 28 2008
Subsequence of A141164. - Reinhard Zumkeller, Mar 26 2011
Also a subsequence of primes of the form x^2 + y^2 + z^2 + 1. - Arkadiusz Wesolowski, Apr 05 2012
Primes p such that p XOR 6 = p - 6. - Brad Clardy, Jul 22 2012

References

  • Z. I. Borevich and I. R. Shafarevich, Number Theory. Academic Press, NY, 1966.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • D. B. Zagier, Zetafunktionen und quadratische Körper, Springer, 1981.

Crossrefs

Subsequence of A004771.
Cf. A141174 (d = 32). A038872 (d = 5). A038873 (d = 8). A068228, A141123 (d = 12). A038883 (d = 13). A038889 (d = 17). A141111, A141112 (d = 65).

Programs

  • Haskell
    a007522 n = a007522_list !! (n-1)
    a007522_list = filter ((== 1) . a010051) a004771_list
    -- Reinhard Zumkeller, Jan 29 2013
    
  • Magma
    [p: p in PrimesUpTo(2000) | p mod 8 eq 7]; // Vincenzo Librandi, Jun 26 2014
  • Maple
    select(isprime, [seq(i,i=7..10000,8)]); # Robert Israel, Nov 22 2016
  • Mathematica
    Select[8Range[200] - 1, PrimeQ] (* Alonso del Arte, Nov 07 2016 *)
  • PARI
    (A007522(m) = local(p, s, x, z); forprime(p = 3, m, s = []; for(x = 0, p-1, if(x^4%p == 2%p, s = concat(s, [x]))); z = matsize(s)[2]; if(z == 2, print1(p, ", ")))); A007522(1400)  \\ Does not return a(m) but prints all terms <= m. - Edited to make it executable by M. F. Hasler, May 22 2025.
    
  • PARI
    A007522_upto(N, start=1)=select(p->p%8==7, primes([start, N]))
    #A7522=A007522_upto(10^5)
    A007522(n)={while(#A7522A007522_upto(N*3\2, N+1))); A7522[n]} \\ M. F. Hasler, May 22 2025
    

Formula

Equals A000040 INTERSECT A004215. - R. J. Mathar, Nov 22 2006
a(n) = 7 + A139487(n)*8, n >= 1. - Wolfdieter Lang, Feb 18 2015

A188172 Number of divisors d of n of the form d == 7 (mod 8).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 2, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1
Offset: 1

Views

Author

R. J. Mathar, Mar 23 2011

Keywords

Examples

			a(A007522(i)) = 1, any i.
		

Crossrefs

Programs

  • Haskell
    a188172 n = length $ filter ((== 0) . mod n) [7,15..n]
    -- Reinhard Zumkeller, Mar 26 2011
    
  • Maple
    sigmamr := proc(n,m,r) local a,d ; a := 0 ; for d in numtheory[divisors](n) do if modp(d,m) = r then a := a+1 ; end if; end do: a; end proc:
    A188172 := proc(n) sigmamr(n,8,7) ; end proc:
  • Mathematica
    Table[Count[Divisors[n],?(Mod[#,8]==7&)],{n,90}] (* _Harvey P. Dale, Mar 08 2014 *)
  • PARI
    a(n) = sumdiv(n, d, (d % 8) == 7); \\ Amiram Eldar, Nov 25 2023

Formula

A188170(n)+a(n) = A001842(n).
A188169(n)+A188170(n)-A188171(n)-a(n) = A002325(n).
a(A188226(n))=n and a(m)<>n for m<A188226(n), n>=0; a(A141164(n))=1. - Reinhard Zumkeller, Mar 26 2011
G.f.: Sum_{k>=1} x^(7*k)/(1 - x^(8*k)). - Ilya Gutkovskiy, Sep 11 2019
Sum_{k=1..n} a(k) = n*log(n)/8 + c*n + O(n^(1/3)*log(n)), where c = gamma(7,8) - (1 - gamma)/8 = -0.212276..., gamma(7,8) = -(psi(7/8) + log(8))/8 is a generalized Euler constant, and gamma is Euler's constant (A001620) (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023

A343107 Numbers having exactly 1 divisor of the form 8*k + 1, that is, numbers with no divisor of the form 8*k + 1 other than 1.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 19, 20, 21, 22, 23, 24, 26, 28, 29, 30, 31, 32, 35, 37, 38, 39, 40, 42, 43, 44, 46, 47, 48, 52, 53, 55, 56, 58, 59, 60, 61, 62, 64, 67, 69, 70, 71, 74, 76, 77, 78, 79, 80, 83, 84, 86, 87, 88, 91, 92, 93, 94, 95, 96
Offset: 1

Views

Author

Jianing Song, Apr 05 2021

Keywords

Comments

Numbers not divisible by at least one of 9, 17, 25, ...

Examples

			7 is a term since it has no divisor congruent to 1 modulo 8 other than 1.
		

Crossrefs

Numbers having m divisors of the form 8*k + i: this sequence (m=1, i=1), A343108 (m=0, i=3), A343109 (m=0, i=5), A343110 (m=0, i=7), A343111 (m=2, i=1), A343112 (m=1, i=3), A343113 (m=1, i=5), A141164 (m=1, i=7).
Indices of 1 in A188169.

Programs

  • Mathematica
    Select[Range[100],NoneTrue[Rest[Divisors[#]],Mod[#,8]==1&]&] (* Harvey P. Dale, Jun 01 2022 *)
  • PARI
    res(n,a,b) = sumdiv(n, d, (d%a) == b)
    isA343107(n) = (res(n,8,1) == 1)

A343108 Numbers having no divisor of the form 8*k + 3.

Original entry on oeis.org

1, 2, 4, 5, 7, 8, 10, 13, 14, 16, 17, 20, 23, 25, 26, 28, 29, 31, 32, 34, 37, 40, 41, 46, 47, 49, 50, 52, 53, 56, 58, 61, 62, 64, 65, 68, 71, 73, 74, 79, 80, 82, 85, 89, 92, 94, 97, 98, 100, 101, 103, 104, 106, 109, 112, 113, 116, 119, 122, 124, 125, 127, 128
Offset: 1

Views

Author

Jianing Song, Apr 05 2021

Keywords

Comments

Numbers not divisible by at least one of 3, 11, 19, ...

Examples

			7 is a term since it has no divisor congruent to 3 modulo 8.
		

Crossrefs

Numbers having m divisors of the form 8*k + i: A343107 (m=1, i=1), this sequence (m=0, i=3), A343109 (m=0, i=5), A343110 (m=0, i=7), A343111 (m=2, i=1), A343112 (m=1, i=3), A343113 (m=1, i=5), A141164 (m=1, i=7).
Indices of 0 in A188170.

Programs

  • PARI
    res(n,a,b) = sumdiv(n, d, (d%a) == b)
    isA343108(n) = (res(n,8,3) == 0)

A343109 Numbers having no divisor of the form 8*k + 5.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 14, 16, 17, 18, 19, 22, 23, 24, 27, 28, 31, 32, 33, 34, 36, 38, 41, 43, 44, 46, 47, 48, 49, 51, 54, 56, 57, 59, 62, 64, 66, 67, 68, 71, 72, 73, 76, 79, 81, 82, 83, 86, 88, 89, 92, 94, 96, 97, 98, 99, 102, 103, 107, 108, 112, 113
Offset: 1

Views

Author

Jianing Song, Apr 05 2021

Keywords

Comments

Numbers not divisible by at least one of 5, 13, 21, ...

Examples

			9 is a term since it has no divisor congruent to 5 modulo 8.
		

Crossrefs

Numbers having m divisors of the form 8*k + i: A343107 (m=1, i=1), A343108 (m=0, i=3), this sequence (m=0, i=5), A343110 (m=0, i=7), A343111 (m=2, i=1), A343112 (m=1, i=3), A343113 (m=1, i=5), A141164 (m=1, i=7).
Indices of 0 in A188171.

Programs

  • PARI
    res(n,a,b) = sumdiv(n, d, (d%a) == b)
    isA343109(n) = (res(n,8,5) == 0)

A343110 Numbers having no divisor of the form 8*k + 7.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 16, 17, 18, 19, 20, 22, 24, 25, 26, 27, 29, 32, 33, 34, 36, 37, 38, 40, 41, 43, 44, 48, 50, 51, 52, 53, 54, 57, 58, 59, 61, 64, 65, 66, 67, 68, 72, 73, 74, 76, 80, 81, 82, 83, 85, 86, 88, 89, 96, 97, 99, 100, 101, 102
Offset: 1

Views

Author

Jianing Song, Apr 05 2021

Keywords

Comments

Numbers not divisible by at least one of 7, 15, 23, ...

Examples

			9 is a term since it has no divisor congruent to 7 modulo 8.
		

Crossrefs

Numbers having m divisors of the form 8*k + i: A343107 (m=1, i=1), A343108 (m=0, i=3), A343109 (m=0, i=5), this sequence (m=0, i=7), A343111 (m=2, i=1), A343112 (m=1, i=3), A343113 (m=1, i=5), A141164 (m=1, i=7).
Indices of 0 in A188172.

Programs

  • PARI
    res(n,a,b) = sumdiv(n, d, (d%a) == b)
    isA343110(n) = (res(n,8,7) == 0)

A343111 Numbers having exactly 2 divisors of the form 8*k + 1, that is, numbers with exactly 1 divisor of the form 8*k + 1 other than 1.

Original entry on oeis.org

9, 17, 18, 25, 27, 33, 34, 36, 41, 45, 49, 50, 51, 54, 57, 63, 65, 66, 68, 72, 73, 75, 82, 85, 89, 90, 97, 98, 100, 102, 105, 108, 113, 114, 117, 119, 121, 123, 125, 126, 129, 130, 132, 135, 136, 137, 144, 145, 146, 147, 150, 161, 164, 165, 169, 170, 175
Offset: 1

Views

Author

Jianing Song, Apr 05 2021

Keywords

Examples

			63 is a term since among the divisors of 63 (namely 1, 3, 7, 9, 21 and 63), the only divisors congruent to 1 modulo 8 are 1 and 9.
		

Crossrefs

Numbers having m divisors of the form 8*k + i: A343107 (m=1, i=1), A343108 (m=0, i=3), A343109 (m=0, i=5), A343110 (m=0, i=7), this sequence (m=2, i=1), A343112 (m=1, i=3), A343113 (m=1, i=5), A141164 (m=1, i=7).
Indices of 2 in A188169.
A007519 is a subsequence.

Programs

  • PARI
    res(n,a,b) = sumdiv(n, d, (d%a) == b)
    isA343111(n) = (res(n,8,1) == 2)

A343112 Numbers having exactly 1 divisor of the form 8*k + 3.

Original entry on oeis.org

3, 6, 9, 11, 12, 15, 18, 19, 21, 22, 24, 30, 35, 36, 38, 39, 42, 43, 44, 45, 48, 55, 59, 60, 63, 67, 69, 70, 72, 76, 77, 78, 83, 84, 86, 87, 88, 90, 91, 93, 95, 96, 107, 110, 111, 115, 117, 118, 120, 121, 126, 131, 133, 134, 138, 139, 140, 141, 143, 144
Offset: 1

Views

Author

Jianing Song, Apr 05 2021

Keywords

Examples

			63 is a term since among the divisors of 63 (namely 1, 3, 7, 9, 21 and 63), the only divisor congruent to 3 modulo 8 is 3.
		

Crossrefs

Numbers having m divisors of the form 8*k + i: A343107 (m=1, i=1), A343108 (m=0, i=3), A343109 (m=0, i=5), A343110 (m=0, i=7), A343111 (m=2, i=1), this sequence (m=1, i=3), A343113 (m=1, i=5), A141164 (m=1, i=7).
Indices of 1 in A188170.
A007520 is a subsequence.

Programs

  • PARI
    res(n,a,b) = sumdiv(n, d, (d%a) == b)
    isA343112(n) = (res(n,8,3) == 1)

A343113 Numbers having exactly 1 divisor of the form 8*k + 5.

Original entry on oeis.org

5, 10, 13, 15, 20, 21, 25, 26, 29, 30, 35, 37, 39, 40, 42, 50, 52, 53, 55, 58, 60, 61, 63, 69, 70, 74, 75, 77, 78, 80, 84, 87, 91, 93, 95, 100, 101, 104, 106, 109, 110, 111, 115, 116, 120, 122, 126, 133, 138, 140, 141, 143, 147, 148, 149, 150, 154, 155
Offset: 1

Views

Author

Jianing Song, Apr 05 2021

Keywords

Examples

			52 is a term since among the divisors of 52 (namely 1, 2, 4, 13, 26 and 52), the only divisor congruent to 5 modulo 8 is 13.
		

Crossrefs

Numbers having m divisors of the form 8*k + i: A343107 (m=1, i=1), A343108 (m=0, i=3), A343109 (m=0, i=5), A343110 (m=0, i=7), A343111 (m=2, i=1), A343112 (m=1, i=3), this sequence (m=1, i=5), A141164 (m=1, i=7).
Indices of 1 in A188171.
A007521 is a subsequence.

Programs

  • PARI
    res(n,a,b) = sumdiv(n, d, (d%a) == b)
    isA343113(n) = (res(n,8,5) == 1)

A188226 Smallest number having exactly n divisors of the form 8*k + 7.

Original entry on oeis.org

1, 7, 63, 315, 945, 1575, 3465, 19845, 10395, 17325, 26775, 127575, 45045, 266805, 190575, 155925, 135135, 2480625, 225225, 130203045, 405405, 1289925, 2168775, 1715175, 675675, 3898125, 3468465, 1576575, 3239775, 67798585575, 2027025, 16769025, 2297295, 20539575, 42170625, 27286875, 3828825, 117661005
Offset: 0

Views

Author

Reinhard Zumkeller, Mar 26 2011

Keywords

Comments

A188172(a(n)) = n and A188172(m) <> n for m < a(n).

Crossrefs

Smallest number having exactly n divisors of the form 8*k + i: A343104 (i=1), A343105 (i=3), A343106 (i=5), this sequence (i=7).

Programs

  • Haskell
    import Data.List  (elemIndex)
    import Data.Maybe (fromJust)
    a188226 n = a188226_list !! n
    a188226_list =
       map (succ . fromJust . (`elemIndex` (map a188172 [1..]))) [0..]

Extensions

a(19)-a(35) from Nathaniel Johnston, Apr 06 2011
More terms from Bert Dobbelaere, Apr 09 2021
Showing 1-10 of 10 results.