cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A343117 a(n) is the absolute difference between the Pisano periods of prime(n)^2 and prime(n).

Original entry on oeis.org

3, 16, 80, 96, 100, 336, 576, 324, 1056, 392, 900, 2736, 1600, 3696, 1472, 5616, 3364, 3600, 8976, 4900, 10656, 6084, 13776, 3872, 18816, 5000, 21216, 7632, 11664, 8512, 32256, 16900, 37536, 6348, 21904, 7500, 49296, 53136, 55776, 59856, 31684, 16200, 36100
Offset: 1

Views

Author

Felix Fröhlich, Apr 05 2021

Keywords

Comments

a(n) = 0 if and only if prime(n) is a Wall-Sun-Sun (Fibonacci-Wieferich) prime.

Crossrefs

Programs

  • PARI
    \\ After Charles R Greathouse IV in A001175 (Start)
    fibmod(n, m)=((Mod([1, 1; 1, 0], m))^n)[1, 2]
    entryp(p)=my(k=p+[0, -1, 1, 1, -1][p%5+1], f=factor(k)); for(i=1, #f[, 1], for(j=1, f[i, 2], if((Mod([1, 1; 1, 0], p)^(k/f[i, 1]))[1, 2], break); k/=f[i, 1])); k
    entry(n)=if(n==1, return(1)); my(f=factor(n), v); v=vector(#f~, i, if(f[i, 1]>1e14, entryp(f[i, 1]^f[i, 2]), entryp(f[i, 1])*f[i, 1]^(f[i, 2] - 1))); if(f[1, 1]==2&&f[1, 2]>1, v[1]=3<
    				

Formula

a(n) = abs(A343116(n)-A060305(n)) = abs(A001175(A001248(n))-A001175(A000040(n))).
Showing 1-1 of 1 results.