A343126 Numbers of the form x + y + z such that (x+y) | x*y, (y+z) | y*z, and (y+z) | x*z where x,y,z are positive integers.
6, 12, 18, 20, 21, 24, 28, 30, 35, 36, 40, 42, 48, 52, 54, 55, 56, 60, 63, 66, 70, 72, 78, 80, 84, 85, 88, 90, 95, 96, 99, 100, 102, 104, 105, 108, 110, 112, 114, 117, 119, 120, 126, 130, 132, 138, 140, 143, 144, 147, 150, 152, 154, 156, 160, 162, 165, 168, 170, 171
Offset: 1
Keywords
Examples
6 is in the sequence since 6 = 2 + 2 + 2, and (2+2) | 2*2 for each pair. 20 is in the sequence since 20 = 4 + 4 + 12, where (4+4) | 4*4 and (4+12) | 4*12 for the other two pairs. 21 is in the sequence since 21 = 3 + 6 + 12, where (3+6) | 3*6, (6+12) | 6*12, and (6+12) | 3*12.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..2049
Crossrefs
Cf. A005279.
Programs
-
Mathematica
Block[{a = {}, nn = 171}, Do[If[i > nn, Break[], Do[If[i + j > nn, Break[], Do[If[# > nn, Break[], If[And[Mod[i j, (i + j)] == 0, Mod[j k, (j + k)] == 0, Mod[i k, (j + k)] == 0], AppendTo[a, #]]] &[i + j + k], {k, j, Infinity}]], {j, i, Infinity}]], {i, Infinity}]; Union@ a] (* Michael De Vlieger, Apr 06 2021 *)