A343130 Number of permutations tau of {1,...,n} with tau(1) = 1 and tau(2) = 2 such that Product_{k=1..n} k^tau(k) = (p-1)^3 for some prime p.
0, 0, 0, 0, 1, 3, 2, 27, 44, 154, 1687, 2925
Offset: 2
Examples
a(6) = 1, and 1^1 * 2^2 * 3^5 * 4^6 * 5^3 * 6^4 = (8461-1)^3 with 8461 prime.
Links
- Zhi-Wei Sun, On permutations of {1,...,n} and related topics, J. Algebraic Combin., 2021.
Programs
-
Mathematica
(* A program to compute a(8): *) CQ[n_]:=CQ[n]=IntegerQ[n^(1/3)]&&PrimeQ[n^(1/3)+1] V[i_]:=V[i]=Part[Permutations[{3,4,5,6,7,8}], i] S[i_]:=S[i]=4*Product[(j+2)^(V[i][[j]]),{j,1,6}] n=0;Do[If[CQ[S[i]],n=n+1],{i,1,6!}];Print[8," ",n]
Extensions
a(12)-a(13) from David A. Corneth, Apr 06 2021
Comments