A343131 For m >= 1, the m-digit number k = d_m||...||d_2||d_1 is a term if it is divisible by f_m(k) that is the sum of the m elementary symmetric polynomials in m variables e_i(k): f_m(k) = Sum_{i=1..m} e_i(d_1, ..., d_m).
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 19, 20, 29, 30, 39, 40, 42, 49, 50, 59, 60, 69, 70, 79, 80, 89, 90, 99, 100, 114, 115, 120, 121, 190, 199, 200, 207, 208, 210, 221, 260, 290, 299, 300, 301, 304, 330, 390, 399, 400, 420, 441, 448, 490, 499, 500, 572, 573, 590, 599, 600, 620
Offset: 1
Examples
For k = 7, f_1(7) = 7, and 7/7 = 1, hence 7 is a term. For k = 42, f_2(4,2) = 4+2 + 4*2 = 14 and 42/14 = 3, hence 42 is a term. For k = 572, f_3(5,7,2) = 5+7+2 + 5*7+7*2+2*5 + 5*7*2 = 14 + 59 + 70 = 143 and 572/143 = 4, hence 572 is a term. For k = 3225, f_4(3,2,2,5) = 3+2+2+5 + 3*2+3*2+3*5+2*2+2*5+2*5 + 3*2*2+3*2*5+3*2*5+2*2*5 + 3*2*2*5 = 215 and 3225/215 = 15, hence 3225 is a term.
Links
- Eric Weisstein's World of Mathematics, Symmetric polynomial.
- Wikipedia, Elementary symmetric polynomial.
Programs
-
PARI
sympol(X, n)=my(s=0); forvec(i=vector(n, j, [1, #X]), s+=prod(k=1, n, X[i[k]]), 2); s ; f(n) = my(d=digits(n)); sum(k=1, #d, sympol(d, k)); \\ A061486 isok(m) = (m % f(m)) == 0; \\ Michel Marcus, Apr 06 2021
Comments