cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343138 Array A(k, n) read by descending antidiagonals: A(k, n) = Sum_{m=0..n} F(k, m)^2, where F are the k-generalized Fibonacci numbers A092921.

Original entry on oeis.org

0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 2, 1, 0, 1, 4, 6, 2, 1, 0, 1, 5, 15, 6, 2, 1, 0, 1, 6, 40, 22, 6, 2, 1, 0, 1, 7, 104, 71, 22, 6, 2, 1, 0, 1, 8, 273, 240, 86, 22, 6, 2, 1, 0, 1, 9, 714, 816, 311, 86, 22, 6, 2, 1, 0, 1, 10, 1870, 2752, 1152, 342, 86, 22, 6, 2, 1, 0
Offset: 0

Views

Author

Peter Luschny, Apr 06 2021

Keywords

Examples

			Array starts:
  n = 0  1  2  3   4   5    6     7     8     9      10
------------------------------------------------------------
[k=0] 0, 1, 1, 1,  1,  1,   1,    1,    1,     1,     1, ...  [A057427]
[k=1] 0, 1, 2, 3,  4,  5,   6,    7,    8,     9,    10, ...  [A001477]
[k=2] 0, 1, 2, 6, 15, 40, 104,  273,  714,  1870,  4895, ...  [A001654]
[k=3] 0, 1, 2, 6, 22, 71, 240,  816, 2752,  9313, 31514, ...  [A107239]
[k=4] 0, 1, 2, 6, 22, 86, 311, 1152, 4288, 15952, 59216, ...
[k=5] 0, 1, 2, 6, 22, 86, 342, 1303, 5024, 19424, 75120, ...
[k=6] 0, 1, 2, 6, 22, 86, 342, 1366, 5335, 20960, 82464, ...
[k=7] 0, 1, 2, 6, 22, 86, 342, 1366, 5462, 21591, 85600, ...
[k=8] 0, 1, 2, 6, 22, 86, 342, 1366, 5462, 21846, 86871, ...
[k=9] 0, 1, 2, 6, 22, 86, 342, 1366, 5462, 21846, 87382, ...
[...]
[ oo] 0, 1, 2, 6, 22, 86, 342, 1366, 5462, 21846, 87382, ...  [A047849]
Note that the first parameter in A(k, n) refers to rows, and the second parameter refers to columns, as always. The usual naming convention for the indices is not adhered to because the row sequences are the sums of the squares of the k-bonacci numbers.
		

References

  • Greg Dresden and Yichen Wang, Sums and convolutions of k-bonacci and k-Lucas numbers, draft 2021.

Crossrefs

Programs

  • Maple
    F := (k, n) -> (F(k, n) := `if`(n<2, n, add(F(k, n-j), j = 1..min(k, n)))):
    A := (k, n) -> add(F(k, m)^2, m = 0..n):
    seq(seq(A(k, n-k), k=0..n), n = 0..11);
    # The following two functions implement Russell Jay Hendel's formula for k >= 2:
    T := (k, n) -> (n + 3)*(k - n) - 4:
    H := (k, n) -> (2*add(j*add((m-k+1)*F(k, n+j)*F(k, n+m), m = j+1..k), j = 1..k-1)
    - add(T(k, j-1)*F(k, n+j)^2, j = 1..k) + (k - 2))/(2*k - 2):
    seq(lprint([k], seq(H(k, n), n = 0..11)), k=2..9); # Peter Luschny, Apr 07 2021
  • Mathematica
    A343138[k_, len_] := Take[Accumulate[LinearRecurrence[PadLeft[{1}, k, 1], PadLeft[{1}, k], len + k]^2], -len - 2];
    A343138[0, len_] := Table[Boole[n != 0], {n, 0, len}];
    A343138[1, len_] := Table[n, {n, 0, len}];
    (* Table: *) Table[A343138[k, 12], {k, 0, 9}]
    (* Sequence / descending antidiagonals: *)
    Table[Table[Take[A343138[j, 12], {k + 1 - j, k + 1 - j}], {j, 0, k}], {k, 0, 10}] // Flatten (* Georg Fischer, Apr 08 2021 *)

Formula

Russell Jay Hendel gives the following representation, valid for k >= 2:
A(n, k) = Sum_{m=0..n} F(k, m)^2 = (1/(2*k-2)) * (2*Sum_{j=1..k-1}(j*Sum_{m=j+1..k} (m-k+1) * F(k, n+j) * F(k, n+m)) - Sum_{j=1..k}(A343125(k, j-1) * F(k, n+j)^2) + (k - 2)). - Peter Luschny, Apr 07 2021