cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343177 a(0)=4; if n > 0 is even then a(n) = 2^(n/2+1)+3, otherwise a(n) = 3*(2^((n-1)/2)+1).

Original entry on oeis.org

4, 6, 7, 9, 11, 15, 19, 27, 35, 51, 67, 99, 131, 195, 259, 387, 515, 771, 1027, 1539, 2051, 3075, 4099, 6147, 8195, 12291, 16387, 24579, 32771, 49155, 65539, 98307, 131075, 196611, 262147, 393219, 524291, 786435, 1048579, 1572867, 2097155, 3145731, 4194307, 6291459
Offset: 0

Views

Author

N. J. A. Sloane, Apr 26 2021

Keywords

Comments

Number of edges along the boundary of the graph G(n) described in A342759.

Crossrefs

Cf. A342759.
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A029744 = {s(n), n>=1}, the numbers 2^k and 3*2^k, as the parent: A029744 (s(n)); A052955 (s(n)-1), A027383 (s(n)-2), A354788 (s(n)-3), A347789 (s(n)-4), A209721 (s(n)+1), A209722 (s(n)+2), A343177 (s(n)+3), A209723 (s(n)+4); A060482, A136252 (minor differences from A354788 at the start); A354785 (3*s(n)), A354789 (3*s(n)-7). The first differences of A029744 are 1,1,1,2,2,4,4,8,8,... which essentially matches eight sequences: A016116, A060546, A117575, A131572, A152166, A158780, A163403, A320770. The bisections of A029744 are A000079 and A007283. - N. J. A. Sloane, Jul 14 2022

Programs

  • Maple
    f:=n->if n = 0 then 4 elif (n mod 2) = 0 then 2^(n/2+1)+3 else 3*(2^((n-1)/2)+1); fi;
    [seq(f(n),n=0..40)];
  • Mathematica
    LinearRecurrence[{1, 2, -2}, {4, 6, 7, 9}, 50] (* or *)
    A343177[n_] := Which[n == 0, 4, OddQ[n], 3*(2^((n-1)/2)+1), True, 2^(n/2+1)+3];
    Array[A343177, 50, 0] (* Paolo Xausa, Feb 02 2024 *)

Formula

G.f.: (4 + 2*x - 7*x^2 - 2*x^3)/((1 - x)*(1 - 2*x^2)). - Stefano Spezia, Feb 04 2023
E.g.f.: 3*cosh(x) + 2*cosh(sqrt(2)*x) + 3*sinh(x) + 3*sinh(sqrt(2)*x)/sqrt(2) - 1. - Stefano Spezia, Jul 25 2024