cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343193 Number of ordered quadruples (w, x, y, z) with gcd(w, x, y, z) = 1 and 1 <= {w, x, y, z} <= 10^n.

Original entry on oeis.org

1, 9279, 92434863, 923988964495, 9239427676877311, 92393887177379735327, 923938441006918271400831, 9239384074081430755652624559, 92393840333765561759423951663423, 923938402972369921481535120722882015
Offset: 0

Views

Author

Karl-Heinz Hofmann, Apr 07 2021

Keywords

Examples

			(1,2,2,3) is counted, but (2,4,4,6) is not, because gcd = 2.
For n=1, the size of the division tesseract matrix is 10 X 10 X 10 X 10:
.
              o------------x(w=10)------------o
             /|.                            ./ |
            / |.                           ./  |
           /  |.                          ./   |
          /   |.                         ./    |
         /    |.                      z(w=10)  |
        /     |.                      . /      |
       /      |.                     . /       |
      /       |.                   .  /     y(w=10)
     o------------------------------.o         |
    |\        /|¯¯¯¯¯¯x(w=1)¯¯¯¯¯¯/. |         |
    | w      / |                 /.| |         |
    |  \ z(w=1)|                /. | |         |
    |   \  /   |y(w=1)         /.  | |         |
    |    \/-------------------/.   | |         |
    |     |                   |    | |         |        w | sums
    |     |  Cube at w = 1    |    | |         |      ----+-----
    |     |   10 X 10 X 10    | _ _| |---------o        1 | 1000
    |     |    contains       |    / |         /        2 |  875
    |     |      1000         |   /  |        /         3 |  973
    |     |    completely     |  /   |       /          4 |  875
    |     | reduced fractions | /    |      /           5 |  992
    |     |                   |/     |     /            6 |  849
    |     /------------------- \     |    /             7 |  999
    |    /                      \    |   /              8 |  875
    |   w                        w   |  /               9 |  973
    |  /                          \  | /               10 |  868
    | /                            \ |/               ----+-----
    o -------------------------------o       sum for a(1) | 9279
		

References

  • Joachim von zur Gathen and Jürgen Gerhard, Modern Computer Algebra, Cambridge University Press, Second Edition 2003, pp. 53-54.

Crossrefs

Related counts of k-tuples:
triples: A071778, A342935, A342841;
quadruples: A082540, A343527, A343193;
5-tuples: A343282;
6-tuples: A343978, A344038. - N. J. A. Sloane, Jun 13 2021

Programs

  • Python
    from labmath import mobius
    def A343193(n): return sum(mobius(k)*(10**n//k)**4 for k in range(1, 10**n+1))

Formula

Lim_{n->infinity} a(n)/10^(4*n) = 1/zeta(4) = A215267 = 90/Pi^4.
a(n) = A082540(10^n).

Extensions

Edited by N. J. A. Sloane, Jun 13 2021