A343217 Numbers k such that A003415(sigma(k)) >= k, where A003415(x) gives the arithmetic derivative of x.
3, 5, 6, 7, 8, 10, 11, 12, 14, 15, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 74, 75, 76, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 98, 99
Offset: 1
Links
Crossrefs
Programs
-
Mathematica
Select[Range[100], If[#2 < 2, 0, #2 Total[#2/#1 & @@@ FactorInteger[#2]]] >= #1 & @@ {#, DivisorSigma[1, #]} &] (* Michael De Vlieger, Apr 08 2021 *)
-
PARI
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1])); isA343217(n) = (A003415(sigma(n))>=n);