cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A348937 a(n) = A003961(n) - A003415(n), where A003961 shifts the prime factorization of n one step towards larger primes, and A003415 gives the arithmetic derivative of n.

Original entry on oeis.org

1, 2, 4, 5, 6, 10, 10, 15, 19, 14, 12, 29, 16, 24, 27, 49, 18, 54, 22, 39, 45, 26, 28, 91, 39, 36, 98, 67, 30, 74, 36, 163, 51, 38, 65, 165, 40, 48, 69, 121, 42, 124, 46, 69, 136, 62, 52, 293, 107, 102, 75, 97, 58, 294, 75, 205, 93, 62, 60, 223, 66, 78, 224, 537, 101, 134, 70, 99, 119, 172, 72, 519, 78, 84, 190, 127
Offset: 1

Views

Author

Antti Karttunen, Nov 06 2021

Keywords

Crossrefs

Programs

  • Mathematica
    f1[p_, e_] := e/p; f2[p_, e_] := NextPrime[p]^e; a[n_] := Times @@ f2 @@@ (f = FactorInteger[n]) - n * Plus @@ f1 @@@ f; Array[a, 100] (* Amiram Eldar, Nov 06 2021 *)
  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A348937(n) = (A003961(n) - A003415(n));

Formula

a(n) = A003961(n) - A003415(n).
a(n) = A336853(n) - A168036(n).
a(n) = A286385(n) + A343224(n).

A376414 Dirichlet inverse of sigma(n)-A003415(n), where sigma is the sum of divisors function and A003415 is the arithmetic derivative.

Original entry on oeis.org

1, -2, -3, 1, -5, 5, -7, 1, 2, 9, -11, -2, -13, 13, 14, 2, -17, -2, -19, -4, 20, 21, -23, -4, 4, 25, 2, -6, -29, -21, -31, 5, 32, 33, 34, 3, -37, 37, 38, -6, -41, -31, -43, -10, -8, 45, -47, -9, 6, -4, 50, -12, -53, -6, 54, -8, 56, 57, -59, 8, -61, 61, -12, 13, 64, -51, -67, -16, 68, -57, -71, 6, -73, 73, -8, -18
Offset: 1

Views

Author

Antti Karttunen, Nov 15 2024

Keywords

Crossrefs

Dirichlet inverse of A343224.

Programs

  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A343224(n) = (sigma(n) - A003415(n));
    memoA376414 = Map();
    A376414(n) = if(1==n,1,my(v); if(mapisdefined(memoA376414,n,&v), v, v = -sumdiv(n,d,if(dA343224(n/d)*A376414(d),0)); mapput(memoA376414,n,v); (v)));

Formula

a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, dA343224(n/d) * a(d).
Showing 1-2 of 2 results.