cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A343227 a(n) = sigma(n) / gcd(sigma(n), n+A003415(n)), where A003415 is the arithmetic derivative, and sigma is the sum of divisors of n.

Original entry on oeis.org

1, 1, 1, 7, 1, 12, 1, 3, 13, 18, 1, 1, 1, 24, 24, 31, 1, 1, 1, 21, 32, 36, 1, 15, 31, 42, 20, 14, 1, 72, 1, 9, 48, 54, 48, 91, 1, 60, 56, 5, 1, 96, 1, 21, 13, 72, 1, 31, 19, 93, 72, 49, 1, 8, 72, 30, 80, 90, 1, 21, 1, 96, 52, 127, 84, 144, 1, 9, 96, 48, 1, 65, 1, 114, 62, 35, 96, 168, 1, 93, 121, 126, 1, 14, 108
Offset: 1

Views

Author

Antti Karttunen, Apr 15 2021

Keywords

Crossrefs

Formula

a(n) = A000203(n) / A343226(n) = A000203(n) / gcd(A000203(n), n+A003415(n))

A348972 a(n) = gcd(A003959(n), A129283(n)), where A003959 is multiplicative with a(p^e) = (p+1)^e and A129283(n) is sum of n and its arithmetic derivative.

Original entry on oeis.org

1, 3, 4, 1, 6, 1, 8, 1, 1, 1, 12, 4, 14, 1, 1, 3, 18, 3, 20, 2, 1, 1, 24, 4, 1, 1, 2, 12, 30, 1, 32, 1, 1, 1, 1, 48, 38, 1, 1, 54, 42, 1, 44, 4, 12, 1, 48, 4, 1, 1, 1, 18, 54, 3, 1, 4, 1, 1, 60, 8, 62, 1, 2, 1, 1, 1, 68, 2, 1, 3, 72, 12, 74, 1, 2, 12, 1, 1, 80, 2, 1, 1, 84, 16, 1, 1, 1, 12, 90, 3, 1, 4, 1, 1, 1, 4, 98
Offset: 1

Views

Author

Antti Karttunen, Nov 06 2021

Keywords

Crossrefs

Programs

  • Mathematica
    f1[p_, e_] := e/p; f2[p_, e_] := (p + 1)^e; a[1] = 1; a[n_] := GCD[n*(1 + Plus @@ f1 @@@ (f = FactorInteger[n])), Times @@ f2 @@@ f]; Array[a, 100] (* Amiram Eldar, Nov 06 2021 *)
  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
    A348972(n) = gcd(A003959(n),(n+A003415(n)));

Formula

a(n) = gcd(A003959(n), A129283(n)) = gcd(A003959(n), n+A003415(n)).
a(n) = gcd(A003959(n), A348970(n)) = gcd(A129283(n), A348970(n)).
a(n) = A129283(n) / A348973(n) = A003959(n) / A348974(n).

A345059 a(n) = A129283(n) / gcd(sigma(n), A129283(n)), where A129283(n) is the sum of n and its arithmetic derivative.

Original entry on oeis.org

1, 1, 1, 8, 1, 11, 1, 4, 15, 17, 1, 1, 1, 23, 23, 48, 1, 1, 1, 22, 31, 35, 1, 17, 35, 41, 27, 15, 1, 61, 1, 16, 47, 53, 47, 96, 1, 59, 55, 6, 1, 83, 1, 23, 14, 71, 1, 40, 21, 95, 71, 54, 1, 9, 71, 37, 79, 89, 1, 19, 1, 95, 57, 256, 83, 127, 1, 10, 95, 43, 1, 76, 1, 113, 65, 39, 95, 149, 1, 128, 189, 125, 1, 13, 107
Offset: 1

Views

Author

Antti Karttunen, Jun 07 2021

Keywords

Crossrefs

Programs

Formula

a(n) = A129283(n) / A343226(n) = A129283(n) / gcd(A000203, A129283(n)).

A348028 Greatest common divisor of A003415 (arithmetic derivative) and sigma, the sum of divisors function.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 4, 1, 3, 8, 1, 1, 3, 1, 6, 2, 1, 1, 4, 1, 3, 1, 8, 1, 1, 1, 1, 2, 1, 12, 1, 1, 3, 8, 2, 1, 1, 1, 12, 39, 1, 1, 4, 1, 3, 4, 14, 1, 3, 8, 4, 2, 1, 1, 4, 1, 3, 1, 1, 6, 1, 1, 18, 2, 1, 1, 39, 1, 3, 1, 20, 6, 1, 1, 2, 1, 1, 1, 4, 2, 3, 8, 20, 1, 3, 4, 24, 2, 1, 24, 4, 1, 1, 3, 7, 1, 1, 1, 2, 1
Offset: 1

Views

Author

Antti Karttunen, Sep 25 2021

Keywords

Crossrefs

Programs

  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A348028(n) = gcd(sigma(n), A003415(n));

Formula

a(n) = gcd(A000203(n), A003415(n)).
Showing 1-4 of 4 results.