A343233 Triangle read by rows: Riordan triangle T = (1 - x*c(x), x), with the generating function c of A000108 (Catalan).
1, -1, 1, -1, -1, 1, -2, -1, -1, 1, -5, -2, -1, -1, 1, -14, -5, -2, -1, -1, 1, -42, -14, -5, -2, -1, -1, 1, -132, -42, -14, -5, -2, -1, -1, 1, -429, -132, -42, -14, -5, -2, -1, -1, 1, -1430, -429, -132, -42, -14, -5, -2, -1, -1, 1
Offset: 0
Examples
The triangle matrix T begins: n/m 0 1 2 3 4 5 6 7 8 9 ... -------------------------------------------------- 0: 1 1: -1 1 2: -1 -1 1 3: -2 -1 -1 1 4: -5 -2 -1 -1 1 5: -14 -5 -2 -1 -1 1 6: -42 -14 -5 -2 -1 -1 1 7: -132 -42 -14 -5 -2 -1 -1 1 8: -429 -132 -42 -14 -5 -2 -1 -1 1 9: -1430 -429 -132 -42 -14 -5 -2 -1 -1 1 ...
Formula
The lower triangular matrix T satisfies: T = I - L^{tr}*|A106270|, also for the finite N X N version, with the unit matrix I and the lower triangular matrix L^{tr}(i, j) = delta_{i, j-1} (Kronecker symbol delta) with first lower diagonal of 1s and 0 otherwise.
T(n, n) = 1, and for T(n, m) = -C_{n - 1 - m } = - |A106270(n-1, m)|, for 0 <= m <= n-1, with the Catalan numbers C(n) = A000108, and T(n, m) = 0 for n < m.
O.g.f. of column m: (1/c(x))*x^m = (1 - x*c(x))*x^m (Riordan matrix of Toeplitz type), with the o.g.f. c of A000108.
O.g.f. row polynomials R(n, x) = Sum_{m=0..n} T(n, m)*x^m, that is the o.g.f. of the triangle. G(z, x) = c(z)/(1 - x*z).
Comments