cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A106270 Inverse of number triangle A106268; triangle T(n,k), 0 <= k <= n.

Original entry on oeis.org

1, -1, 1, -2, -1, 1, -5, -2, -1, 1, -14, -5, -2, -1, 1, -42, -14, -5, -2, -1, 1, -132, -42, -14, -5, -2, -1, 1, -429, -132, -42, -14, -5, -2, -1, 1, -1430, -429, -132, -42, -14, -5, -2, -1, 1, -4862, -1430, -429, -132, -42, -14, -5, -2, -1, 1, -16796, -4862, -1430, -429, -132, -42, -14, -5, -2, -1, 1
Offset: 0

Views

Author

Paul Barry, Apr 28 2005

Keywords

Comments

Sequence array for the sequence a(n) = 2*0^n - C(n), where C = A000108 (Catalan numbers). Row sums are A106271. Antidiagonal sums are A106272.
The lower triangular matrix |T| (unsigned case) gives the Riordan matrix R = (c(x), x), a Toeplitz matrix. It is its own so called L-Eigen-matrix (cf. Bernstein - Sloane for such Eigen-sequences, and Barry for such eigentriangles), that is R*R = L*(R - I), with the infinite matrices I (identity) and L with matrix elements L(i, j) = delta(i,j-1) (Kronecker symbol; first upper diagonal with 1s). Thus R = L*(I - R^{-1}), and R^{-1} = I - L^{tr}*R (tr for transposed) is the Riordan matrix (1 - x*c(x), x) given in A343233. (For finite N X N matrices the R^{-1} equation is also valid, but for the other two ones the last row with only zeros has to be omitted.) - Gary W. Adamson and Wolfdieter Lang, Apr 11 2021

Examples

			Triangle (with rows n >= 0 and columns k >= 0) begins as follows:
     1;
    -1,    1;
    -2,   -1,   1;
    -5,   -2,  -1,   1;
   -14,   -5,  -2,  -1,  1;
   -42,  -14,  -5,  -2, -1,  1;
  -132,  -42, -14,  -5, -2, -1,  1;
  -429, -132, -42, -14, -5, -2, -1,  1;
		

Crossrefs

Programs

  • Magma
    A106270:= func< n,k | k eq n select 1 else -Catalan(n-k) >;
    [A106270(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 09 2023
    
  • Mathematica
    A106270[n_, k_]:= If[k==n, 1, -CatalanNumber[n-k]];
    Table[A106270[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jan 09 2023 *)
  • PARI
    C(n) = binomial(2*n,n)/(n+1); \\ A000108
    T(n, k) = if(k <= n, 2*0^(n-k) - C(n-k), 0); \\ Michel Marcus, Nov 11 2022
    
  • SageMath
    def A106270(n,k): return 1 if (k==n) else -catalan_number(n-k)
    flatten([[A106270(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jan 09 2023

Formula

Number triangle T(n, k) = 2*0^(n-k) - C(n-k) if k <= n, 0 otherwise; Riordan array (2*sqrt(1-4*x)/(1+sqrt(1-4*x)), x) = (c(x)*sqrt(1-4*x), x), where c(x) is the g.f. of A000108.
Sum_{k=0..n} T(n, k) = A106271(n).
Sum_{k=0..floor(n/2)} T(n, k) = A106272(n).
Bivariate g.f.: Sum_{n, k >= 0} T(n,k)*x^n*y^k = (1/(1 - x*y)) * (2 - c(x)), where c(x) is the g.f. of A000108. - Petros Hadjicostas, Jul 15 2019
From G. C. Greubel, Jan 09 2023: (Start)
Sum_{k=0..n} 2^(n-j)*abs(T(n,k)) = A112696(n).
Sum_{k=0..n} 2^k*abs(T(n,k)) = A014318(n). (End)
Showing 1-1 of 1 results.