cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A106271 Row sums of number triangle A106270.

Original entry on oeis.org

1, 0, -2, -7, -21, -63, -195, -624, -2054, -6916, -23712, -82498, -290510, -1033410, -3707850, -13402695, -48760365, -178405155, -656043855, -2423307045, -8987427465, -33453694485, -124936258125, -467995871775, -1757900019099, -6619846420551, -24987199492703
Offset: 0

Views

Author

Paul Barry, Apr 28 2005

Keywords

Comments

From Petros Hadjicostas, Jul 15 2019: (Start)
To prove R. J. Mathar's conjecture, let A(x) be the g.f. of the current sequence. We note first that
Sum_{n >= 2} (n+1)*a(n)*x^n = (x*A(x))' - 1,
Sum_{n >= 2} (1-5*n)*a(n-1)*x^n = x*A(x) - 5*x*(x*A(x))' + 4*x, and
Sum_{n >= 2} 2*(2*n-1)*a(n-2)*x^n = 4*x*(x^2*A(x))' - 2*x^2*A(x).
Adding these equations (side by side), we get
Sum_{n >= 2} ((n+1)*a(n) + (1-5*n)*a(n-1) + 2*(2*n-1)*a(n-2))*x^n = 0,
which proves the conjecture. (End)

Crossrefs

Cf. A014138, A014137 (partial sums of Catalan numbers (A000108)).
Cf. A106270.

Programs

  • Mathematica
    Table[1 - Sum[(2n)!/n!/(n+1)!,{n,1,k}],{k,0,30}] (* Alexander Adamchuk, Feb 23 2007 *)

Formula

G.f.: c(x)*sqrt(1 - 4x)/(1 - x), where c(x) is the g.f. of A000108.
a(n) = Sum_{k = 0..n} 2*0^(n-k) - C(n-k), where C(m) = A000108(m) (Catalan numbers).
a(n) = 2 - A014137(n) for n >= 0 and a(n) = 1 - A014138(n) for n >= 0. - Alexander Adamchuk, Feb 23 2007, corrected by Vaclav Kotesovec, Jul 22 2019
Conjecture: (n+1)*a(n) + (1-5*n)*a(n-1) + 2*(2*n-1)*a(n-2) = 0. - R. J. Mathar, Nov 09 2012
a(n) ~ -2^(2*n + 2) / (3*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Jul 22 2019

Extensions

More terms from Alexander Adamchuk, Feb 23 2007

A106272 Antidiagonal sums of number triangle A106270.

Original entry on oeis.org

1, -1, -1, -6, -15, -48, -147, -477, -1577, -5339, -18373, -64125, -226385, -807025, -2900825, -10501870, -38258495, -140146660, -515897195, -1907409850, -7080017615, -26373676870, -98562581255, -369433290520, -1388466728579, -5231379691972
Offset: 0

Views

Author

Paul Barry, Apr 28 2005

Keywords

Comments

To prove R. J. Mathar's conjecture, let A(x) be the g.f. of the current sequence. We note first that
Sum_{n >= 3} (n+1)*a(n)*x^n = (x*A(x))' + (-1 + 2*x + 3*x^2),
Sum_{n >= 3} 2*(1-2*n)*a(n-1)*x^n = 2*x*A(x) - 4*x*(x*A(x))' + (2*x - 6*x^2),
Sum_{n >= 3} -(n+1)*a(n-2)*x^n = -(x^3*A(x))' + 3*x^2, and
Sum_{n >= 3} 2*(2*n-1)*a(n-3)*x^n = 4*x*(x^3*A(x))' - 2*x^3*A(x).
Adding these equations (side by side), we get
Sum_{n >= 3} ((n+1)*a(n) + 2*(1-2*n)*a(n-1) - (n+1)*a(n-2) + 2*(2*n-1)*a(n-3))*x^n = 0,
which proves the conjecture. - Petros Hadjicostas, Jul 15 2019

Crossrefs

Programs

  • PARI
    c(x) = (1-sqrt(1-4*x))/(2*x);
    my(x='x+O('x^35)); Vec(c(x)*sqrt(1 - 4*x)/(1 - x^2)) \\ Michel Marcus, Jul 16 2019

Formula

G.f.: c(x)*sqrt(1 - 4*x)/(1 - x^2), where c(x) is the g.f. of A000108.
a(n) = Sum_{k = 0..floor(n/2)} 2*0^(n-2k) - C(n-2k).
Conjecture: (n+1)*a(n) + 2*(1-2*n)*a(n-1) - (n+1)*a(n-2) + 2*(2*n-1)*a(n-3) = 0. - R. J. Mathar, Nov 09 2012

A014318 Convolution of Catalan numbers and powers of 2.

Original entry on oeis.org

1, 3, 8, 21, 56, 154, 440, 1309, 4048, 12958, 42712, 144210, 496432, 1735764, 6145968, 21986781, 79331232, 288307254, 1054253208, 3875769606, 14315659632, 53097586284, 197677736208, 738415086066
Offset: 0

Views

Author

Keywords

Comments

Binomial transform of A097332: (1, 2, 3, 5, 9, 18, 39, ...). - Gary W. Adamson, Aug 01 2011
Hankel transform is A087960. - Wathek Chammam, Dec 02 2011

Crossrefs

Programs

  • Magma
    A014318:= func< n | (&+[2^(n-j)*Catalan(j): j in [0..n]]) >;
    [A014318(n): n in [0..40]]; // G. C. Greubel, Jan 09 2023
    
  • Maple
    a:=proc(n) options operator, arrow: sum(2^(n-j)*binomial(2*j,j)/(j+1), j=0..n) end proc: seq(a(n), n=0..23); # Emeric Deutsch, Oct 16 2008
  • Mathematica
    a[n_]:= a[n]= Sum[2^(n-j)*CatalanNumber[j], {j,0,n}];
    Table[a[n], {n,0,40}] (* G. C. Greubel, Jan 09 2023 *)
  • SageMath
    def A014318(n): return sum(2^(n-j)*catalan_number(j) for j in range(n+1))
    [A014318(n) for n in range(41)] # G. C. Greubel, Jan 09 2023

Formula

From Emeric Deutsch, Oct 16 2008: (Start)
G.f.: (1-sqrt(1-4*z))/(2*z*(1-2*z)).
a(n) = Sum_{j=0..n} (2^(n-j) * binomial(2*j,j)/(j+1)). (End)
a(n) = Sum_{j=0..n} abs(A106270(n, j)) * A000079(j). - Gary W. Adamson, Apr 02 2009
Recurrence: (n+1)*a(n) = 32*(2*n-7)*a(n-5) + 48*(8-3*n)*a(n-4) + 8*(16*n-29)*a(n-3) + 4*(13-14*n)*a(n-2) + 12*n*a(n-1), n>=5. - Fung Lam, Mar 09 2014
Asymptotics: a(n) ~ 2^(2n+1)/n^(3/2)/sqrt(Pi). - Fung Lam, Mar 21 2014
G.f. A(x) satisfies: A(x) = 1 / (1 - 2*x) + x * (1 - 2*x) * A(x)^2. - Ilya Gutkovskiy, Nov 21 2021

A014140 Apply partial sum operator twice to Catalan numbers.

Original entry on oeis.org

1, 3, 7, 16, 39, 104, 301, 927, 2983, 9901, 33615, 116115, 406627, 1440039, 5147891, 18550588, 67310955, 245716112, 901759969, 3325067016, 12312494483, 45766188970, 170702447097, 638698318874, 2396598337975, 9016444758528, 34003644251233, 128524394659942, 486793096819011
Offset: 0

Views

Author

Keywords

Comments

From Alexander Adamchuk, Jul 04 2006: (Start)
p divides a(p-1) and a((p-3)/2) for primes in A002476.
p divides a((p-5)/2) for primes in A068228.
p^2 divides a(p^2-1) for all primes p > 3. (End)
Equals triangle A106270(unsigned) * [1, 2, 3, ...]. - Gary W. Adamson, Apr 02 2009

Crossrefs

Partial sums of A014137.

Programs

  • Maple
    b:= proc(n) option remember; `if`(n<0, [0$2], (q->(f->
          [f[2]+q, q]+f)(b(n-1)))(binomial(2*n, n)/(n+1)))
        end:
    a:= n-> b(n)[1]:
    seq(a(n), n=0..28);  # Alois P. Heinz, Feb 13 2022
  • Mathematica
    Table[Sum[Sum[(2k)!/k!/(k+1)!,{k,0,m}],{m,0,n}],{n,0,50}] Table[Sum[(n+1-k)*(2k)!/k!/(k+1)!,{k,0,n}],{n,0,50}] (* Alexander Adamchuk, Jul 04 2006 *)
  • PARI
    sm(v)={my(s=vector(#v)); s[1]=v[1]; for(n=2, #v, s[n]=v[n]+s[n-1]); s; }
    C(n)=binomial(2*n, n)/(n+1);
    sm(sm(vector(66, n, C(n-1))))
    /* Joerg Arndt, May 04 2013 */

Formula

1*C(n) + 2*C(n-1) + 3*C(n-2) + ... + (n+1-k)*C(k) + ... + n*C(1) + (n+1)*C(0), where C(k) = (2k)!/(k!*(k+1)!) is Catalan Number A000108(k). - Alexander Adamchuk, Jul 04 2006
From Alexander Adamchuk, Jul 04 2006: (Start)
a(n) = Sum_{m=0..n} Sum_{k=0..m} (2k)!/(k!*(k+1)!).
a(n) = Sum_{k=0..n} (n+1-k)*(2k)!/(k!*(k+1)!). (End)
G.f.: 1/(1-x)^2*(1-sqrt(1-4*x))/(2*x). - Vladimir Kruchinin, Oct 14 2016
a(n) = Sum_{k=0..n} binomial(n+2,k+2)*r(k), where r(k) are the Riordan numbers A005043. - Vladimir Kruchinin, Oct 14 2016
a(n) ~ 2^(2*n+4) / (9*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 14 2016

Extensions

More terms from Alexander Adamchuk, Jul 04 2006

A106268 Number triangle T(n,k) = (-1)^(n-k)*binomial(k-n, n-k) = (0^(n-k) + binomial(2*(n-k), n-k))/2 if k <= n, 0 otherwise; Riordan array (1/(2-C(x)), x) where C(x) is g.f. for Catalan numbers A000108.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 10, 3, 1, 1, 35, 10, 3, 1, 1, 126, 35, 10, 3, 1, 1, 462, 126, 35, 10, 3, 1, 1, 1716, 462, 126, 35, 10, 3, 1, 1, 6435, 1716, 462, 126, 35, 10, 3, 1, 1, 24310, 6435, 1716, 462, 126, 35, 10, 3, 1, 1, 92378, 24310, 6435, 1716, 462, 126, 35, 10, 3, 1, 1
Offset: 0

Views

Author

Paul Barry, Apr 28 2005

Keywords

Comments

Triangle includes A088218.
Inverse is A106270.

Examples

			Triangle (with rows n >= 0 and columns k >= 0) begins as follows:
    1;
    1,  1;
    3,  1,  1;
   10,  3,  1, 1;
   35, 10,  3, 1, 1;
  126, 35, 10, 3, 1, 1;
  ...
Production matrix begins:
    1, 1;
    2, 0, 1;
    5, 0, 0, 1;
   14, 0, 0, 0, 1;
   42, 0, 0, 0, 0, 1;
  132, 0, 0, 0, 0, 0, 1;
  429, 0, 0, 0, 0, 0, 0, 1;
  ... - _Philippe Deléham_, Oct 02 2014
		

Crossrefs

Cf. A000108, A024718 (row sums), A088218, A106269 (diagonal sums), A106270.

Programs

  • Magma
    A106268:= func< n,k | k eq n select 1 else (n-k+1)*Catalan(n-k)/2 >;
    [A106268(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 10 2023
    
  • Mathematica
    T[n_, k_]:= (-1)^(n-k)*Binomial[k-n, n-k];
    Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jan 10 2023 *)
  • PARI
    trg(nn) = {for (n=1, nn, for (k=1, n, print1(binomial(k-n,n-k)*(-1)^(n-k), ", ");); print(););} \\ Michel Marcus, Oct 03 2014
    
  • SageMath
    def A106268(n,k): return (1/2)*(0^(n-k) + (n-k+1)*catalan_number(n-k))
    flatten([[A106268(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jan 10 2023

Formula

T(n, k) = (-1)^(n-k)*binomial(k-n, n-k).
T(n, k) = (1/2)*(0^(n-k) + binomial(2*(n-k), n-k)).
Sum_{k=0..n} T(n, k) = A024718(n) (row sums).
Sum_{k=0..floor(n/2)} T(n-k, k) = A106269(n) (diagonal sums).
Bivariate g.f.: Sum_{n, k >= 0} T(n,k)*x^n*y^k = (1/2) * (1/(1 - x*y)) * (1 + 1/sqrt(1 - 4*x)). - Petros Hadjicostas, Jul 15 2019

A343233 Triangle read by rows: Riordan triangle T = (1 - x*c(x), x), with the generating function c of A000108 (Catalan).

Original entry on oeis.org

1, -1, 1, -1, -1, 1, -2, -1, -1, 1, -5, -2, -1, -1, 1, -14, -5, -2, -1, -1, 1, -42, -14, -5, -2, -1, -1, 1, -132, -42, -14, -5, -2, -1, -1, 1, -429, -132, -42, -14, -5, -2, -1, -1, 1, -1430, -429, -132, -42, -14, -5, -2, -1, -1, 1
Offset: 0

Views

Author

Gary W. Adamson and Wolfdieter Lang, Apr 12 2021

Keywords

Comments

As an unsigned sequence a(n) this is identical with the one of A155586(n+1), for n >= 0, but the triangle is not a simple signed version of A155586. See the formula.
This lower triangular Riordan matrix T of Toeplitz type is the inverse of the Riordan matrix (c(x), x) = |A106270|, also of Toeplitz type.

Examples

			The triangle matrix T begins:
  n/m     0    1    2   3   4   5   6   7   8   9 ...
  --------------------------------------------------
  0:      1
  1:     -1    1
  2:     -1   -1    1
  3:     -2   -1   -1   1
  4:     -5   -2   -1  -1   1
  5:    -14   -5   -2  -1  -1   1
  6:    -42  -14   -5  -2  -1  -1   1
  7:   -132  -42  -14  -5  -2  -1  -1   1
  8:   -429 -132  -42 -14  -5  -2  -1  -1   1
  9:  -1430 -429 -132 -42 -14  -5  -2  -1  -1   1
  ...
		

Crossrefs

Cf. A106270 (unsigned), A155586.

Formula

The lower triangular matrix T satisfies: T = I - L^{tr}*|A106270|, also for the finite N X N version, with the unit matrix I and the lower triangular matrix L^{tr}(i, j) = delta_{i, j-1} (Kronecker symbol delta) with first lower diagonal of 1s and 0 otherwise.
T(n, n) = 1, and for T(n, m) = -C_{n - 1 - m } = - |A106270(n-1, m)|, for 0 <= m <= n-1, with the Catalan numbers C(n) = A000108, and T(n, m) = 0 for n < m.
O.g.f. of column m: (1/c(x))*x^m = (1 - x*c(x))*x^m (Riordan matrix of Toeplitz type), with the o.g.f. c of A000108.
O.g.f. row polynomials R(n, x) = Sum_{m=0..n} T(n, m)*x^m, that is the o.g.f. of the triangle. G(z, x) = c(z)/(1 - x*z).
Showing 1-6 of 6 results.