A106271
Row sums of number triangle A106270.
Original entry on oeis.org
1, 0, -2, -7, -21, -63, -195, -624, -2054, -6916, -23712, -82498, -290510, -1033410, -3707850, -13402695, -48760365, -178405155, -656043855, -2423307045, -8987427465, -33453694485, -124936258125, -467995871775, -1757900019099, -6619846420551, -24987199492703
Offset: 0
A106272
Antidiagonal sums of number triangle A106270.
Original entry on oeis.org
1, -1, -1, -6, -15, -48, -147, -477, -1577, -5339, -18373, -64125, -226385, -807025, -2900825, -10501870, -38258495, -140146660, -515897195, -1907409850, -7080017615, -26373676870, -98562581255, -369433290520, -1388466728579, -5231379691972
Offset: 0
A014318
Convolution of Catalan numbers and powers of 2.
Original entry on oeis.org
1, 3, 8, 21, 56, 154, 440, 1309, 4048, 12958, 42712, 144210, 496432, 1735764, 6145968, 21986781, 79331232, 288307254, 1054253208, 3875769606, 14315659632, 53097586284, 197677736208, 738415086066
Offset: 0
- Fung Lam, Table of n, a(n) for n = 0..1600
- W. Chammam, F. Marcellán and R. Sfaxi, Orthogonal polynomials, Catalan numbers, and a general Hankel determinant evaluation, Linear Algebra and its Applications, Volume 436, Issue 7, 1 April 2012, Pages 2105-2116.
-
A014318:= func< n | (&+[2^(n-j)*Catalan(j): j in [0..n]]) >;
[A014318(n): n in [0..40]]; // G. C. Greubel, Jan 09 2023
-
a:=proc(n) options operator, arrow: sum(2^(n-j)*binomial(2*j,j)/(j+1), j=0..n) end proc: seq(a(n), n=0..23); # Emeric Deutsch, Oct 16 2008
-
a[n_]:= a[n]= Sum[2^(n-j)*CatalanNumber[j], {j,0,n}];
Table[a[n], {n,0,40}] (* G. C. Greubel, Jan 09 2023 *)
-
def A014318(n): return sum(2^(n-j)*catalan_number(j) for j in range(n+1))
[A014318(n) for n in range(41)] # G. C. Greubel, Jan 09 2023
A014140
Apply partial sum operator twice to Catalan numbers.
Original entry on oeis.org
1, 3, 7, 16, 39, 104, 301, 927, 2983, 9901, 33615, 116115, 406627, 1440039, 5147891, 18550588, 67310955, 245716112, 901759969, 3325067016, 12312494483, 45766188970, 170702447097, 638698318874, 2396598337975, 9016444758528, 34003644251233, 128524394659942, 486793096819011
Offset: 0
-
b:= proc(n) option remember; `if`(n<0, [0$2], (q->(f->
[f[2]+q, q]+f)(b(n-1)))(binomial(2*n, n)/(n+1)))
end:
a:= n-> b(n)[1]:
seq(a(n), n=0..28); # Alois P. Heinz, Feb 13 2022
-
Table[Sum[Sum[(2k)!/k!/(k+1)!,{k,0,m}],{m,0,n}],{n,0,50}] Table[Sum[(n+1-k)*(2k)!/k!/(k+1)!,{k,0,n}],{n,0,50}] (* Alexander Adamchuk, Jul 04 2006 *)
-
sm(v)={my(s=vector(#v)); s[1]=v[1]; for(n=2, #v, s[n]=v[n]+s[n-1]); s; }
C(n)=binomial(2*n, n)/(n+1);
sm(sm(vector(66, n, C(n-1))))
/* Joerg Arndt, May 04 2013 */
A106268
Number triangle T(n,k) = (-1)^(n-k)*binomial(k-n, n-k) = (0^(n-k) + binomial(2*(n-k), n-k))/2 if k <= n, 0 otherwise; Riordan array (1/(2-C(x)), x) where C(x) is g.f. for Catalan numbers A000108.
Original entry on oeis.org
1, 1, 1, 3, 1, 1, 10, 3, 1, 1, 35, 10, 3, 1, 1, 126, 35, 10, 3, 1, 1, 462, 126, 35, 10, 3, 1, 1, 1716, 462, 126, 35, 10, 3, 1, 1, 6435, 1716, 462, 126, 35, 10, 3, 1, 1, 24310, 6435, 1716, 462, 126, 35, 10, 3, 1, 1, 92378, 24310, 6435, 1716, 462, 126, 35, 10, 3, 1, 1
Offset: 0
Triangle (with rows n >= 0 and columns k >= 0) begins as follows:
1;
1, 1;
3, 1, 1;
10, 3, 1, 1;
35, 10, 3, 1, 1;
126, 35, 10, 3, 1, 1;
...
Production matrix begins:
1, 1;
2, 0, 1;
5, 0, 0, 1;
14, 0, 0, 0, 1;
42, 0, 0, 0, 0, 1;
132, 0, 0, 0, 0, 0, 1;
429, 0, 0, 0, 0, 0, 0, 1;
... - _Philippe Deléham_, Oct 02 2014
-
A106268:= func< n,k | k eq n select 1 else (n-k+1)*Catalan(n-k)/2 >;
[A106268(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 10 2023
-
T[n_, k_]:= (-1)^(n-k)*Binomial[k-n, n-k];
Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jan 10 2023 *)
-
trg(nn) = {for (n=1, nn, for (k=1, n, print1(binomial(k-n,n-k)*(-1)^(n-k), ", ");); print(););} \\ Michel Marcus, Oct 03 2014
-
def A106268(n,k): return (1/2)*(0^(n-k) + (n-k+1)*catalan_number(n-k))
flatten([[A106268(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jan 10 2023
A343233
Triangle read by rows: Riordan triangle T = (1 - x*c(x), x), with the generating function c of A000108 (Catalan).
Original entry on oeis.org
1, -1, 1, -1, -1, 1, -2, -1, -1, 1, -5, -2, -1, -1, 1, -14, -5, -2, -1, -1, 1, -42, -14, -5, -2, -1, -1, 1, -132, -42, -14, -5, -2, -1, -1, 1, -429, -132, -42, -14, -5, -2, -1, -1, 1, -1430, -429, -132, -42, -14, -5, -2, -1, -1, 1
Offset: 0
The triangle matrix T begins:
n/m 0 1 2 3 4 5 6 7 8 9 ...
--------------------------------------------------
0: 1
1: -1 1
2: -1 -1 1
3: -2 -1 -1 1
4: -5 -2 -1 -1 1
5: -14 -5 -2 -1 -1 1
6: -42 -14 -5 -2 -1 -1 1
7: -132 -42 -14 -5 -2 -1 -1 1
8: -429 -132 -42 -14 -5 -2 -1 -1 1
9: -1430 -429 -132 -42 -14 -5 -2 -1 -1 1
...
Showing 1-6 of 6 results.
Comments