A343276 a(n) = n! * [x^n] -x*(x + 1)*exp(x)/(x - 1)^3.
0, 1, 10, 81, 652, 5545, 50886, 506905, 5480056, 64116657, 808856290, 10959016321, 158851484100, 2454385635481, 40285778016862, 700261611998985, 12853532939027056, 248482678808005345, 5047002269952482106, 107466341437781300017, 2394019421567804960380
Offset: 0
Keywords
Programs
-
Maple
egf := -x*(x + 1)*exp(x)/(x - 1)^3: ser := series(egf, x, 32): seq(n!*coeff(ser, x, n), n = 0..20);
-
Mathematica
a[n_] := Sum[Pochhammer[n - k + 1, k]*k^2, {k, 0, n}]; Table[a[n], {n, 0, 20}]
-
Python
def a(): a, b, n = 0, 1, 2 yield 0 while True: yield b a, b = b, -(n + 1)*a + ((2 + n*(n + 2))*b)//(n - 1) n += 1 A343276 = a(); print([next(A343276) for _ in range(21)])
-
SageMath
def a(n): return sum(rising_factorial(n - k + 1, k)*k^2 for k in (0..n)) print([a(n) for n in (0..20)])
Formula
a(n) = Sum_{k=0..n} rf(n - k + 1, k)*k^2, where rf is the rising factorial.
a(n) = (2 + n*(n + 2))*a(n - 1)/(n - 1) - (n + 1)*a(n - 2) for n >= 3.
A002775(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n, k)*a(k).
a(n) = Sum_{k=1..n} k^2*k!*binomial(n,k). - Ridouane Oudra, Jun 15 2025