A343282 Number of ordered 5-tuples (v,w, x, y, z) with gcd(v, w, x, y, z) = 1 and 1 <= {v, w, x, y, z} <= 10^n.
1, 96601, 9645718621, 964407482028001, 96438925911789115351, 9643875373658964992585011, 964387358678775616636890654841, 96438734235127451288511508421855851, 9643873406165059293451290072800801506621
Offset: 0
Keywords
References
- Joachim von zur Gathen and Jürgen Gerhard, Modern Computer Algebra, Cambridge University Press, Second Edition 2003, pp. 53-54.
Links
- Chai Wah Wu, Table of n, a(n) for n = 0..15
Crossrefs
Programs
-
Python
from labmath import mobius def A343282(n): return sum(mobius(k)*(10**n//k)**5 for k in range(1, 10**n+1))
Formula
Lim_{n->infinity} a(n)/10^(5*n) = 1/zeta(5) = A343308.
a(n) = A082544(10^n). - Chai Wah Wu, Apr 11 2021
Extensions
Edited by N. J. A. Sloane, Jun 13 2021