A343316 Array T(n, k), n, k > 0, read by antidiagonals; the balanced ternary representation of T(n, k) is obtained by multiplying componentwise the digits in the balanced ternary representations of n and of k.
0, 0, 0, 0, 1, 0, 0, -1, -1, 0, 0, 0, 4, 0, 0, 0, 1, 3, 3, 1, 0, 0, -1, 2, 3, 2, -1, 0, 0, 0, -2, 3, 3, -2, 0, 0, 0, 1, -3, -3, 4, -3, -3, 1, 0, 0, -1, -4, -3, -4, -4, -3, -4, -1, 0, 0, 0, 1, -3, -3, 13, -3, -3, 1, 0, 0, 0, 1, 0, 0, -2, 12, 12, -2, 0, 0, 1, 0
Offset: 0
Examples
Array T(n, k) begins: n\k| 0 1 2 3 4 5 6 7 8 9 10 11 12 ---+-------------------------------------------------- 0| 0 0 0 0 0 0 0 0 0 0 0 0 0 1| 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 2| 0 -1 4 3 2 -2 -3 -4 1 0 -1 4 3 3| 0 0 3 3 3 -3 -3 -3 0 0 0 3 3 4| 0 1 2 3 4 -4 -3 -2 -1 0 1 2 3 5| 0 -1 -2 -3 -4 13 12 11 10 9 8 7 6 6| 0 0 -3 -3 -3 12 12 12 9 9 9 6 6 7| 0 1 -4 -3 -2 11 12 13 8 9 10 5 6 8| 0 -1 1 0 -1 10 9 8 10 9 8 10 9 9| 0 0 0 0 0 9 9 9 9 9 9 9 9 10| 0 1 -1 0 1 8 9 10 8 9 10 8 9 11| 0 -1 4 3 2 7 6 5 10 9 8 13 12 12| 0 0 3 3 3 6 6 6 9 9 9 12 12 Array T(n, k) begins in balanced ternary notation (with "T" instead of digits "-1"): n\k| 0 1 1T 10 11 1TT 1T0 1T1 10T 100 101 11T 110 ---+---------------------------------------------------------- 0| 0 0 0 0 0 0 0 0 0 0 0 0 0 1| 0 1 T 0 1 T 0 1 T 0 1 T 0 1T| 0 T 11 10 1T T1 T0 TT 1 0 T 11 10 10| 0 0 10 10 10 T0 T0 T0 0 0 0 10 10 11| 0 1 1T 10 11 TT T0 T1 T 0 1 1T 10 1TT| 0 T T1 T0 TT 111 110 11T 101 100 10T 1T1 1T0 1T0| 0 0 T0 T0 T0 110 110 110 100 100 100 1T0 1T0 1T1| 0 1 TT T0 T1 11T 110 111 10T 100 101 1TT 1T0 10T| 0 T 1 0 T 101 100 10T 101 100 10T 101 100 100| 0 0 0 0 0 100 100 100 100 100 100 100 100 101| 0 1 T 0 1 10T 100 101 10T 100 101 10T 100 11T| 0 T 11 10 1T 1T1 1T0 1TT 101 100 10T 111 110 110| 0 0 10 10 10 1T0 1T0 1T0 100 100 100 110 110
Links
- Rémy Sigrist, Table of n, a(n) for n = 0..10010
- Rémy Sigrist, Colored representation of the table for n, k < 3^6 (where the color denotes the sign of T(n, k): red for positive values, blue for negative values, white for zeros)
- Wikipedia, Viczek fractal
Programs
-
PARI
T(n,k) = { if (n==0 || k==0, return (0), my (d=centerlift(Mod(n,3)), t=centerlift(Mod(k,3))); d*t + 3*T((n-d)\3, (k-t)\3)) }
Comments