cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343327 Start with a(1)=1; thereafter a(n+1) = Sum_{k=1..n such that d(a(k)) = d(a(n))} d(a(k)) where d = A000005.

Original entry on oeis.org

1, 1, 2, 2, 4, 3, 6, 4, 6, 8, 12, 6, 16, 5, 8, 20, 12, 18, 24, 8, 24, 16, 10, 28, 30, 24, 32, 36, 9, 9, 12, 42, 40, 48, 10, 32, 48, 20, 54, 56, 64, 7, 10, 36, 18, 60, 12, 66, 72, 24, 80, 30, 88, 96, 36, 27, 40, 104, 112, 40, 120, 16, 15, 44, 72, 48, 50, 78, 128, 136, 144, 15
Offset: 1

Views

Author

David James Sycamore, Apr 12 2021

Keywords

Comments

Every nonzero number occurs in the sequence since all terms in A000005 are included. The multiplicity of any term m (> 2) is d(m)-1 (since m > 2 cannot be created by adding m 1s). Prime 2 occurs twice, consecutively (see example), and thereafter no two adjacent terms can be prime because the term prior to a prime q is the first occurrence of 2^(q-1) (composite for q > 2), and since d(q)=2, the following term is a multiple (> 1) of 2. Thus each prime > 2 is flanked by composite even numbers, and occurs once only. Conjecture: The primes, after the first appearance of 2, appear in their natural order.
The primes appear in order at a(n) for n in {3, 4, 6, 14, 42, 507, 1939, 22454, 90322, ...}, with a(3) = a(4) = 2. No further primes appear for n <= 2^20. - Michael De Vlieger, May 01 2021

Examples

			Given a(1)=1, a(2) is also 1, since a(1) has no prior term. a(3)=1+1=2 and a(4)=2 because a(3) has 2 divisors and there is no prior term with 2 divisors. a(5)=2+2=4.
		

Crossrefs

Programs

  • Mathematica
    Block[{a = {1}, c}, Do[(If[! IntegerQ[c[#]], Set[c[#], 1], c[#]++]; AppendTo[a, # c[#]]) &@ DivisorSigma[0, a[[-1]]], 71]; a] (* Michael De Vlieger, Apr 12 2021 *)
  • PARI
    lista(nn) = {my(va = vector(nn)); va[1] = 1; for (n=2, nn, va[n] = sum(k=1, n-1, if (numdiv(va[k]) == numdiv(va[n-1]), numdiv(va[k])));); va;} \\ Michel Marcus, Apr 28 2021