A343340 Numbers with a prime index dividing all the other prime indices, but with no prime index divisible by all the other prime indices.
30, 60, 66, 70, 90, 102, 110, 120, 132, 138, 140, 150, 154, 170, 180, 182, 186, 190, 198, 204, 210, 220, 238, 240, 246, 264, 270, 273, 276, 280, 282, 286, 290, 300, 306, 308, 310, 322, 330, 340, 350, 354, 360, 364, 372, 374, 380, 396, 402, 406, 408, 410, 414
Offset: 1
Keywords
Examples
The sequence of terms together with their prime indices begins: 30: {1,2,3} 182: {1,4,6} 282: {1,2,15} 60: {1,1,2,3} 186: {1,2,11} 286: {1,5,6} 66: {1,2,5} 190: {1,3,8} 290: {1,3,10} 70: {1,3,4} 198: {1,2,2,5} 300: {1,1,2,3,3} 90: {1,2,2,3} 204: {1,1,2,7} 306: {1,2,2,7} 102: {1,2,7} 210: {1,2,3,4} 308: {1,1,4,5} 110: {1,3,5} 220: {1,1,3,5} 310: {1,3,11} 120: {1,1,1,2,3} 238: {1,4,7} 322: {1,4,9} 132: {1,1,2,5} 240: {1,1,1,1,2,3} 330: {1,2,3,5} 138: {1,2,9} 246: {1,2,13} 340: {1,1,3,7} 140: {1,1,3,4} 264: {1,1,1,2,5} 350: {1,3,3,4} 150: {1,2,3,3} 270: {1,2,2,2,3} 354: {1,2,17} 154: {1,4,5} 273: {2,4,6} 360: {1,1,1,2,2,3} 170: {1,3,7} 276: {1,1,2,9} 364: {1,1,4,6} 180: {1,1,2,2,3} 280: {1,1,1,3,4} 372: {1,1,2,11}
Crossrefs
The first condition alone gives the complement of A342193.
The second condition alone gives A343337.
The partitions with these Heinz numbers are counted by A343345.
A000005 counts divisors.
A000070 counts partitions with a selected part.
A001055 counts factorizations.
A067824 counts strict chains of divisors starting with n.
A253249 counts strict chains of divisors.
Programs
-
Mathematica
Select[Range[2,100],With[{p=PrimePi/@First/@FactorInteger[#]},!And@@IntegerQ/@(Max@@p/p)&&And@@IntegerQ/@(p/Min@@p)]&]
Comments