A343345 Number of integer partitions of n that are empty, or have smallest part dividing all the others, but do not have greatest part divisible by all the others.
1, 0, 0, 0, 0, 0, 1, 1, 4, 6, 11, 16, 29, 36, 59, 79, 115, 149, 216, 270, 379, 473, 634, 793, 1063, 1292, 1689, 2079, 2667, 3241, 4142, 4982, 6291, 7582, 9434, 11321, 14049, 16709, 20545, 24490, 29860, 35380, 43004, 50741, 61282, 72284, 86680, 101906, 121990
Offset: 0
Keywords
Examples
The a(6) = 1 through a(11) = 16 partitions: (321) (3211) (431) (531) (541) (641) (521) (3321) (721) (731) (3221) (4311) (4321) (4331) (32111) (5211) (5221) (5321) (32211) (5311) (5411) (321111) (32221) (7211) (33211) (33221) (43111) (43211) (52111) (52211) (322111) (53111) (3211111) (322211) (332111) (431111) (521111) (3221111) (32111111)
Crossrefs
The first condition alone gives A083710.
The Heinz numbers of these partitions are 1 and A343340.
The second condition alone gives A343341.
The opposite version is A343344.
The strict case is A343381.
A000009 counts strict partitions.
A000041 counts partitions.
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n],#=={}||And@@IntegerQ/@(#/Min@@#)&&!And@@IntegerQ/@(Max@@#/#)&]],{n,0,30}]
Comments